Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the past few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g. incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.more » « less
-
Boeva, Valentina (Ed.)Abstract Summary Multiple sequence alignment is an initial step in many bioinformatics pipelines, including phylogeny estimation, protein structure prediction and taxonomic identification of reads produced in amplicon or metagenomic datasets, etc. Yet, alignment estimation is challenging on datasets that exhibit substantial sequence length heterogeneity, and especially when the datasets have fragmentary sequences as a result of including reads or contigs generated by next-generation sequencing technologies. Here, we examine techniques that have been developed to improve alignment estimation when datasets contain substantial numbers of fragmentary sequences. We find that MAGUS, a recently developed MSA method, is fairly robust to fragmentary sequences under many conditions, and that using a two-stage approach where MAGUS is used to align selected ‘backbone sequences’ and the remaining sequences are added into the alignment using ensembles of Hidden Markov Models further improves alignment accuracy. The combination of MAGUS with the ensemble of eHMMs (i.e. MAGUS+eHMMs) clearly improves on UPP, the previous leading method for aligning datasets with high levels of fragmentation. Availability and implementation UPP is available on https://github.com/smirarab/sepp, and MAGUS is available on https://github.com/vlasmirnov/MAGUS. MAGUS+eHMMs can be performed by running MAGUS to obtain the backbone alignment, and then using the backbone alignment as an input to UPP. Supplementary information Supplementary data are available at Bioinformatics online.more » « less