skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zahawi, Rakan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tropical forest restoration presents a potential lifeline to mitigate climate change and biodiversity crises in the Anthropocene. Yet, the extent to which human interventions, such as tree planting, accelerate the recovery of mature functioning ecosystems or redirect successional trajectories toward novel states remains uncertain due to a lack of long‐term experiments. In 2004–2006, we established three 0.25‐ha plots at 10 sites in southern Costa Rica to test three forest restoration approaches: natural regeneration (no planting), applied nucleation (planting in patches), and plantation (full planting). In a comprehensive survey after 16–18 years of recovery, we censused >80,000 seedlings, saplings, and trees from at least 255 species across 26 restoration plots (nine natural regeneration, nine applied nucleation, eight plantation) and six adjacent reference forests to evaluate treatment effects on recruitment patterns and community composition. Both applied nucleation and plantation treatments resulted in significantly elevated seedling and sapling establishment and more predictable community composition compared with natural regeneration. Similarity of vegetation composition to reference forest tended to scale positively with treatment planting intensity. Later‐successional species with seeds ≥5 mm had significantly greater seedling and sapling abundance in the two planted treatments, and plantation showed similar recruitment densities of large‐seeded (≥10 mm) species to reference forest. Plantation tended toward a lower abundance of early‐successional recruits than applied nucleation. Trees (≥5 cm dbh) in all restoration treatments continued to be dominated by a few early‐successional species and originally transplanted individuals. Seedling recruits of planted taxa were more abundant in applied nucleation than the other treatments though few transitioned into the sapling layer. Overall, our findings show that active tree planting accelerates the establishment of later‐successional trees compared with natural regeneration after nearly two decades. While the apparent advantages of higher density tree planting on dispersal and understory establishment of larger seeded, later‐successional species recruitment is notable, more time is needed to assess whether these differences will persist and transition to the more rapid development of a mature later‐successional canopy. Our results underscore the need for ecological restoration planning and monitoring that targets biodiversity recovery over multiple decades. 
    more » « less
    Free, publicly-accessible full text available November 19, 2025
  2. Applied nucleation and other spatially patterned restoration methods are promising approaches for scaling up projects to meet ambitious international restoration commitments in an ecologically and economically sound manner. Much of the corresponding literature to date, however, has centered around theoretical discussions and small‐scale studies that are largely divorced from constraints faced by restoration practitioners. We briefly review recent academic literature about applied nucleation and other spatially patterned restoration methods and discuss practical challenges to their implementation. We offer several recommendations to move spatially patterned restoration from an academic conversation to scalable application, including: (1) comparing different planting designs and natural regeneration within the same system at an appropriate scale; (2) monitoring ecological outcomes throughout the restored area over sufficient time to evaluate recovery; (3) quantifying costs and documenting other logistical constraints to implementation; and (4) exploring methods for using unplanted areas to provide benefits to landholders until planted vegetation establishes.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Choosing effective methods to restore habitat for the diverse faunal assemblages of tropical forests is hampered by lack of long-term data comparing multiple restoration treatments. We conducted area counts of bird assemblages over 12 years (~5–17 years since restoration) in a blocked experiment with two active planted treatments (tree plantations and applied nucleation) and a passive restoration treatment (natural regeneration) replicated at 11 sites in Costa Rica. We also surveyed six pastures and five remnant forest sites to assess recovery of avian species richness, composition, forest specialists, and range-restricted species in restoration plots relative to degraded and reference systems. Restoration treatments showed increased resemblance of avian assemblages to remnant forest over time. Applied nucleation proved equally effective as plantation, despite a reduced planted area, whereas natural regeneration recovered more slowly. Assemblage-level trends in avian species richness and compositional similarity to reference forest are underpinned by reductions in use by pasture birds and by gradual increases in richness of forest-affiliated species. Because forest-affiliated species tend to have narrower distributions than the open-country species they replace, forest restoration can reduce biotic homogenization at the local scale. Restoration practitioners should consider applied nucleation as an alternative to standard plantations if seeking rapid recovery of bird assemblages. However, the ecological return on investment from natural regeneration increases over a couple of decades. Managers should monitor trends in forest-affiliated and rangerestricted species to track the recovery of the full avian assemblages, since coarse metrics like species richness and overall compositional similarity may plateau relatively quickly 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  4. With increased interest in forest restoration comes an urgent need to provide accurate, scalable, and cost‐effective monitoring tools. The ubiquity of smartphones has led to a surge in monitoring apps. We reviewed and assessed monitoring apps found through web searches and conversations with practitioners. We identified 42 apps that (1) automatically monitor indicators or (2) facilitate data entry. We selected the five most promising from the first category, based on their relevance, availability, stability, and user support. We compared them to traditional field techniques in a well‐studied restoration project in Costa Rica. We received further feedback from 15 collaborator organizations that evaluated these in their corresponding field restoration sites. Diameter measurements correlated well with traditional tape‐based measurements (R2 = 0.86–0.89). Canopy openness and ground cover showed weaker correlations to densiometer and quadrat cover measurements (R2 = 0.42–0.51). Apps did not improve labor efficiency but do preclude the purchase of specialized field equipment. The apps reviewed here need further development and validation to support monitoring adequately, especially in the tropics. Estimates of development and maintenance costs, as well as statistics on user uptake, are required for cost‐effective development. We recommend a coordinated effort to develop dedicated restoration monitoring apps that can speed up and standardize the collection of indicators and provide evidence on restoration outcomes alongside a centralized repository of this information.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Forest restoration is increasingly heralded as a global strategy to conserve biodiversity and mitigate climate change, yet long-term studies that compare the effects of different restoration strategies on tree recruit demographics are lacking. We measured tree recruit survival and growth annually in three restoration treatments—natural regeneration, applied nucleation and tree plantations—replicated at 13 sites in southern Costa Rica—and evaluated the changes over a decade. Early-successional seedlings had 14% higher survival probability in the applied nucleation than natural regeneration treatments. Early-successional sapling growth rates were initially 227% faster in natural regeneration and 127% faster in applied nucleation than plantation plots but converged across restoration treatments over time. Later-successional seedling and sapling survival were similar across treatments but later-successional sapling growth rates were 39% faster in applied nucleation than in plantation treatments. Results indicate that applied nucleation was equally or more effective in enhancing survival and growth of naturally recruited trees than the more resource-intensive plantation treatment, highlighting its promise as a restoration strategy. Finally, tree recruit dynamics changed quickly over the 10-year period, underscoring the importance of multi-year studies to compare restoration interventions and guide ambitious forest restoration efforts planned for the coming decades. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’. 
    more » « less
  6. Abstract Reversing large-scale habitat degradation and deforestation goes beyond what can be achieved by site-level ecological restoration and a landscape ecology perspective is fundamental. Here we assess the relative importance of tree cover and its configuration on forest-dependent birds and late-successional tree seedlings in restoration sites in southern Costa Rica. The abundance and species richness of birds increased in landscapes with more corridors, higher tree cover, and lower levels of fragmentation, highlighting the importance of riparian corridors for connectivity, and continuous tree cover as suitable habitat. Landscape variables affected abundance and species richness of seedlings similarly, but effects were weaker, possibly because seedlings face establishment limitation in addition to dispersal limitation. Moreover, the scale of landscape effects on seedlings was small, likely because proximal individual trees can significantly influence recruitment in restoration plots. Results underscore the importance of incorporating landscape-level metrics to restoration projects, as knowing the extent, and how the landscape may affect restoration outcomes can help to infer what kind of species will arrive to restoration plots. 
    more » « less
  7. Choosing appropriate forest restoration interventions is challenging. Natural regeneration can rapidly facilitate forest recovery in many situations. However, barriers such as dispersal limitation and competition with non-native species can require assisted restoration approaches to facilitate plant community recovery. We used a study that has directly compared the outcomes of tropical wet forest restoration interventions across 11 replicate sites in southern Costa Rica. Within this framework, we examined the functional recovery trajectories of recruiting tree sapling communities across a gradient of restoration interventions including low (natural regeneration), intermediate (applied nucleation), and high (plantation) initial resource-investment, which we compared to remnant reference forest. We collated leaf and stem functional traits for tree species that comprised the bulk of recruiting saplings, then determined how community-weighted trait means and functional diversity metrics changed over a decade across treatments. Results show that assisted restoration approaches (applied nucleation, plantation) sped the development of more functionally diverse tree communities, more than tripling the functional richness (FRic) of recruiting communities when compared to natural regeneration. However, functional dispersion (i.e., the trait range of dominant species) was equivalent across interventions, and between 28 and 44% lower than remnant forest, indicating that increases in FRic under assisted restoration were driven by species recruiting in low abundances (<10 individuals across treatments). Recruits in assisted restoration treatments also had 10–15% tougher, less-palatable leaves, and leaves were even tougher in reference forest, which could be driven by increasing herbivory pressure along the gradient of interventions. Results show that tracking simple metrics such as species richness can mask a more mechanistic understanding of ecosystem recovery that is elucidated by taking a functional trait-driven approach toward evaluating outcomes. For example, our work identified a paucity of dense-wooded species recruiting across restoration interventions, wood density was 11–13% lower in restoration treatments than reference forests, underscoring such species as prime targets for enrichment planting. Overall, findings suggest that assisted restoration can catalyze the functional recovery of naturally recruiting tree communities in landscapes that are slow to recover naturally and highlight the importance of evaluating how different components of functional diversity shift over time to fully understand restoration outcomes. 
    more » « less
  8. Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses.

     
    more » « less