Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 17, 2026
-
Recent advances in scanning probe microscopy methodology have enabled the measurement of tip−sample interactions with picometer accuracy in all three spatial dimensions, thereby providing a detailed site-specific and distance-dependent picture of the related properties. This paper explores the degree of detail and accuracy that can be achieved in locally quantifying probe−molecule interaction forces and energies for adsorbed molecules. Toward this end, cobalt phthalocyanine (CoPc), a promising CO2 reduction catalyst, was studied on Ag(111) as a model system using low-temperature, ultrahigh vacuum noncontact atomic force microscopy. Data were recorded as a function of distance from the surface, from which detailed three-dimensional maps of the molecule’s interaction with the tip for normal and lateral forces as well as the tip−molecule interaction potential were constructed. The data were collected with a CO molecule at the tip apex, which enabled a detailed visualization of the atomic structure. Determination of the tip−substrate interaction as a function of distance allowed isolation of the molecule−tip interactions; when analyzing these in terms of a Lennard−Jones-type potential, the atomically resolved equilibrium interaction energies between the CO tethered to the tip and the CoPc molecule could be recovered. Interaction energies peaked at less than 160 meV, indicating a physisorption interaction. As expected, the interaction was weakest at the aromatic hydrogens around the periphery of the molecule and strongest surrounding the metal center. The interaction, however, did not peak directly above the Co atom but rather in pockets surrounding it.more » « less
-
There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10–7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.more » « less
-
Abstract Carbon‐based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom‐up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high‐resolution atomic force microscopy (HR‐AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin‐degree of freedom in carbon‐based nanostructures.more » « less
An official website of the United States government
