skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zamani, Haniyeh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Infectious disease can threaten host populations. Hosts can rapidly evolve resistance during epidemics, with this evolution often modulated by fitness trade-offs (e.g., between resistance and fecundity). However, many organisms switch between asexual and sexual reproduction, and this shift in reproductive strategy can also alter how resistance in host populations persists through time. Recombination can shuffle alleles selected for during an asexual phase, uncoupling the combinations of alleles that facilitated resistance to parasites and altering the distribution of resistance phenotypes in populations. Furthermore, in host species that produce diapausing propagules (e.g., seeds, spores, or resting eggs) after sex, accumulation of propagules into and gene flow out of a germ bank introduce allele combinations from past populations. Thus, recombination and gene flow might shift populations away from the trait distribution reached after selection by parasites. To understand how recombination and gene flow alter host population resistance, we tracked the genotypic diversity and resistance distributions of two wild populations of cyclical parthenogens. In one population, resistance and genetic diversity increased after recombination whereas, in the other, recombination did not shift already high resistance and genetic diversity. In both lakes, resistance remained high after temporal gene flow. This observation surprised us: due to costs to resistance imposed by a fecundity-resistance trade-off, we expected that high population resistance would be a transient state that would be eroded through time by recombination and gene flow. Instead, low resistance was the transient state, while recombination and gene flow re-established or maintained high resistance to this virulent parasite. We propose this outcome may have been driven by the joint influence of fitness trade-offs, genetic slippage after recombination, and temporal gene flow via the egg bank. 
    more » « less