Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum information processing demands efficient quantum light sources (QLS) capable of producing high-fidelity single photons or entangled photon pairs. Single epitaxial quantum dots (QDs) have long been proven to be efficient sources of deterministic single photons; however, their production via molecular-beam epitaxy presents scalability challenges. Conversely, colloidal semiconductor QDs offer scalable solution processing and tunable photoluminescence but suffer from broader linewidths and unstable emissions. This leads to spectrally inseparable emission from exciton (X) and biexciton (XX) states, complicating the production of single photons and triggered photon pairs. Here, we demonstrate that colloidal semiconductor quantum shells (QSs) achieve significant spectral separation (~ 75-80 meV) and long temporal stability of X and XX emissive states, enabling the observation of exciton-biexciton bunching in colloidal QDs. Our low-temperature single-particle measurements show cascaded XX-X emission of single photon pairs for over 200 seconds, with minimal overlap between X and XX features. The X-XX distinguishability allows for an in-depth theoretical characterization of cross-correlation strength, placing it in perspective with photon pairs of epitaxial counterparts. These findings highlight a strong potential of semiconductor quantum shells for applications in quantum information processing.more » « lessFree, publicly-accessible full text available November 5, 2025
-
Free, publicly-accessible full text available May 23, 2025
-
Free, publicly-accessible full text available April 23, 2025