skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zamzam, Ahmed S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increasing levels of renewable generation motivate a growing interest in data-driven approaches for AC optimal power flow (AC OPF) to manage uncertainty; however, a lack of disciplined dataset creation and benchmarking prohibits useful comparison among approaches in the literature. To instill confidence, models must be able to reliably predict solutions across a wide range of operating conditions. This paper develops the OPF-Learn package for Julia and Python, which uses a computationally efficient approach to create representative datasets that span a wide spectrum of the AC OPF feasible region. Load profiles are uniformly sampled from a convex set that contains the AC OPF feasible set. For each infeasible point found, the convex set is reduced using infeasibility certificates, found by using properties of a relaxed formulation. The framework is shown to generate datasets that are more representative of the entire feasible space versus traditional techniques seen in the literature, improving machine learning model performance. 
    more » « less
  2. Tensor factorization methods have recently gained increased popularity. A key feature that renders tensors attractive is the ability to directly model multi-relational data. In this work, we propose ParaSketch, a parallel tensor factorization algorithm that enables massive parallelism, to deal with large tensors. The idea is to compress the large tensor into multiple small tensors, decompose each small tensor in parallel, and combine the results to reconstruct the desired latent factors. Prior art in this di- rection entails potentially very high complexity in the (Gaussian) compression and final combining stages. Adopting sketching matrices for compression, the proposed method enjoys a dramatic reduction in compression complexity, and features a much lighter combining step. Moreover, theoretical analysis shows that the compressed tensors inherit latent identifiability under mild conditions, hence establishing correctness of the overall approach. Numerical experiments corroborate the theory and demonstrate the effectiveness of the proposed algorithm. 
    more » « less
  3. null (Ed.)