skip to main content

Search for: All records

Creators/Authors contains: "Zanella, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the fine-structure [C ii ] line at 158 μ m as a molecular gas tracer by analyzing the relationship between molecular gas mass ( M mol ) and [C ii ] line luminosity ( L [C II ] ) in 11,125 z ≃ 6 star-forming, main-sequence galaxies from the simba simulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [C ii ] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01) log L [ C II ] – log M mol relation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies at z ≲ 6. We derive a median [C ii ]-to- M mol conversion factor of α [C II ] ≃ 18 M ⊙ / L ⊙ . This is lower than the average value of ≃30 M ⊙ / L ⊙ derived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [C ii ] observations ofmore »low-mass galaxies. For our simulations, [C ii ] is a better tracer of the molecular gas than CO J = 1–0, especially at the lowest metallicities, where much of the gas is CO-dark . We find that L [C II ] is more tightly correlated with M mol than with star formation rate (SFR), and both the log L [ C II ] – log M mol and log L [ C II ] – log SFR relations arise from the Kennicutt–Schmidt relation. Our findings suggest that L [C II ] is a promising tracer of the molecular gas at the earliest cosmic epochs.« less
    Free, publicly-accessible full text available April 1, 2023