Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Degradable and functionalizable polyacetals synthesized via ring-opening metathesis copolymerizationDegradable polymers are promising materials for use to reduce plastic waste and advance biomedical applications. However, to meet the demands of specific applications, tailoring the properties of degradable polymers through precise modification of their chemical structures is critical. Herein, we present a new class of degradable and functionalizable polyacetals synthesized by the ring-opening metathesis copolymerization (ROMP) of two commercially available monomers: dimethyl oxanorbornadiene-2,3-dicarboxylate (OND) and 4,7-dihydro-1,3-dioxepin (DXP). The resulting polyacetals are not only acid-degradable but also readily and efficiently functionalizable via thia–Michael addition, yielding degradable polymer materials with various functional groups and tunable thermal properties.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Abstract Herein, we report the photoinitiated polymerization‐induced self‐assembly (photo‐PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one‐pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide‐functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo‐PISA in the large‐scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery.more » « less
An official website of the United States government
