skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zarnetske, Phoebe L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate warming is altering life cycles of ectotherms by advancing phenology and decreasing generation times. Theoretical models provide powerful tools to investigate these effects of climate warming on consumer–resource population dynamics. Yet, existing theory primarily considers organisms with simplified life histories in constant temperature environments, making it difficult to predict how warming will affect organisms with complex life cycles in seasonal environments. We develop a size-structured consumer–resource model with seasonal temperature dependence, parameterized for a freshwater insect consuming zooplankton. We simulate how climate warming in a seasonal environment could alter a key life-history trait of the consumer, number of generations per year, mediating responses of consumer–resource population sizes and consumer persistence. We find that, with warming, consumer population sizes increase through multiple mechanisms. First, warming decreases generation times by increasing rates of resource ingestion and growth and/or lengthening the growing season. Second, these life-history changes shorten the juvenile stage, increasing the number of emerging adults and population-level reproduction. Unstructured models with similar assumptions found that warming destabilized consumer–resource dynamics. By contrast, our size-structured model predicts stability and consumer persistence. Our study suggests that, in seasonal environments experiencing climate warming, life-history changes that lead to shorter generation times could delay population extinctions.

    more » « less
  2. Disturbance regimes can strongly influence geographic patterns of biodiversity. The types of disturbances and their frequencies can have varying impacts on different dimensions of biodiversity and taxonomic groups, and their influence can also vary with spatial scale. Yet disturbance layers are lacking at sufficiently high spatial resolution and extent to uncover these relationships with biodiversity. We detected disturbances for the conterminous United States from Landsat time series using the established LandTrendr temporal segmentation with a novel secondary classification that incorporates spatial context. We then included these disturbance layers, aggregated to metrics at different temporal and spatial scales, into model of species richness at National Ecological Observatory Network sites. 
    more » « less
  3. Abstract Motivation

    Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region.

    Main Types of Variable Contained

    Ecological, life‐history, morphological and geographical traits.

    Spatial Location and Grain

    Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

    Time Period and Grain

    IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

    Major Taxa and Level of Measurement

    Classes Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals).

    Software Format

    .csv; R.

    more » « less
  4. null (Ed.)
    Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise. 
    more » « less
  5. null (Ed.)
    Global declines in biodiversity have the potential to affect ecosystem function, and vice versa, in both terrestrial and aquatic ecological realms. While many studies have considered biodiversity-ecosystem function (BEF) relationships at local scales within single realms, there is a critical need for more studies examining BEF linkages among ecological realms, across scales, and across trophic levels. We present a framework linking abiotic attributes, productivity, and biodiversity across terrestrial and inland aquatic realms. We review examples of the major ways that BEF linkages form across realms–cross-system subsidies, ecosystem engineering, and hydrology. We then formulate testable hypotheses about the relative strength of these connections across spatial scales, realms, and trophic levels. While some studies have addressed these hypotheses individually, to holistically understand and predict the impact of biodiversity loss on ecosystem function, researchers need to move beyond local and simplified systems and explicitly investigate cross-realm and trophic interactions and large-scale patterns and processes. Recent advances in computational power, data synthesis, and geographic information science can facilitate studies spanning multiple ecological realms that will lead to a more comprehensive understanding of BEF connections. 
    more » « less
  6. null (Ed.)
  7. Goslee, Sarah (Ed.)
    1. The geodiv r package calculates gradient surface metrics from imagery and other gridded datasets to provide continuous measures of landscape heterogeneity for landscape pattern analysis. 2. geodiv is the first open-source, command line toolbox for calculating many gradient surface metrics and easily integrates parallel computing for applications with large images or rasters (e.g. remotely sensed data). All functions may be applied either globally to derive a single metric for an entire image or locally to create a texture image over moving windows of a user-defined extent. 3. We present a comprehensive description of the functions available through geodiv. A supplemental vignette provides an example application of geodiv to the fields of landscape ecology and biogeography. 4. geodiv allows users to easily retrieve estimates of spatial heterogeneity for a variety of purposes, enhancing our understanding of how environmental structure influences ecosystem processes. The package works with any continuous imagery and may be widely applied in many fields where estimates of surface complexity are useful. 
    more » « less
  8. null (Ed.)