Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices.more » « less
- 
            Abstract Mechanical properties have emerged as a significant label-free marker for characterizing deformable particles such as cells. Here, we demonstrated the first single-particle-resolved, cytometry-like deformability-activated sorting in the continuous flow on a microfluidic chip. Compared with existing deformability-based sorting techniques, the microfluidic device presented in this work measures the deformability and immediately sorts the particles one-by-one in real time. It integrates the transit-time-based deformability measurement and active hydrodynamic sorting onto a single chip. We identified the critical factors that affect the sorting dynamics by modeling and experimental approaches. We found that the device throughput is determined by the summation of the sensing, buffering, and sorting time. A total time of ~100 ms is used for analyzing and sorting a single particle, leading to a throughput of 600 particles/min. We synthesized poly(ethylene glycol) diacrylate (PEGDA) hydrogel beads as the deformability model for device validation and performance evaluation. A deformability-activated sorting purity of 88% and an average efficiency of 73% were achieved. We anticipate that the ability to actively measure and sort individual particles one-by-one in a continuous flow would find applications in cell-mechanotyping studies such as correlational studies of the cell mechanical phenotype and molecular mechanism.more » « less
- 
            Abstract Hydrophobic hydration, whereby water spontaneously structures around hydrophobic and amphiphilic molecules, plays a key role in the process of surfactant micelle formation and micellar oil solubilization. Using vibrational Raman multivariate curve resolution spectroscopy, we characterized changes in the hydrophobic hydration occurring within nonionic alkylphenol ethoxylate surfactant Tergitol NP‐12 micelles as a function of oil solubilization. We report trends in the changes of hydrophobic hydration depending on the chain length of the oil as well as the presence of a halogen atom in the oil chemical structure. Changes in hydrophobic hydration directly correlate to changes in the physical properties of the micellar solution, including cloud point and micelle hydrodynamic diameter. We compare hydrophobic hydration of Tergitol NP‐12 to nonionic linear alkyl ethoxylate surfactant Makon TD‐12 and ionic sodium dodecyl sulfate and observe similar trends; the molecular structure of the oil has the largest impact on the hydrophobic hydration. We believe these studies contribute to a fundamental understanding of the importance of hydrophobic hydration in surfactant and oil aggregates, especially as it relates to micellar oil solubilization, and provide insight into how the molecular solubilizate can impact micellar structure, size, and stability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
