Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lowen, Anice C (Ed.)An important aspect of how viruses spread and infect is the viral burst size, or the number of new viruses produced by each infected cell. Surprisingly, this value remains poorly characterized for influenza A virus (IAV), commonly known as the flu. In this study, we screened tens of thousands of cells using a microfluidic method called droplet quantitative PCR (dqPCR). The high-throughput capability of dqPCR enabled the measurement of a large population of infected cells producing progeny virus. By measuring the fully assembled and successfully released viruses from these infected cells, we discover that the viral burst sizes for both the seasonal H3N2 and the 2009 pandemic H1N1 strains vary significantly, with H3N2 ranging from 101to 104viruses per cell, and H1N1 ranging from 101to 103viruses per cell. Some infected cells produce average numbers of new viruses, while others generate extensive number of viruses. In fact, we find that only 10% of the single-cell infections are responsible for creating a significant portion of all the viruses. This small fraction produced approximately 60% of new viruses for H3N2 and 40% for H1N1. On average, each infected cell of the H3N2 flu strain produced 709 new viruses, whereas for H1N1, each infected cell produced 358 viruses. This novel method reveals insights into the flu virus and can lead to improved strategies for managing and preventing the spread of viruses.more » « less
-
In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.more » « less
An official website of the United States government
