Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site‐specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to “smart” functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.
-
Abstract DNA nanotechnology provides an approach to create precise, tunable, and biocompatible nanostructures for biomedical applications. However, the stability of these structures is severely compromised in biological milieu due to their fast degradation by nucleases. Recently, we showed how enzymatic polymerization could be harnessed to grow polynucleotide brushes of tunable length and location on the surface of DNA origami nanostructures, which greatly enhances their nuclease stability. Here, we report on strategies that allow for both spatial and temporal control over polymerization through activatable initiation, cleavage, and regeneration of polynucleotide brushes using restriction enzymes. The ability to site‐specifically decorate DNA origami nanostructures with polynucleotide brushes in a spatiotemporally controlled way provides access to “smart” functionalized DNA architectures with potential applications in drug delivery and supramolecular assembly.
-
Abstract The controllable production of microparticles with complex geometries is useful for a variety of applications in materials science and bioengineering. The formation of intricate microarchitectures typically requires sophisticated fabrication techniques such as flow lithography or multiple-emulsion microfluidics. By harnessing the molecular interactions of a set of artificial intrinsically disordered proteins (IDPs), we have created complex microparticle geometries, including porous particles, core-shell and hollow shell structures, and a unique ‘fruits-on-a-vine’ arrangement, by exploiting the metastable region of the phase diagram of thermally responsive IDPs within microdroplets. Through multi-site unnatural amino acid (UAA) incorporation, these protein microparticles can also be photo-crosslinked and stably extracted to an all-aqueous environment. This work expands the functional utility of artificial IDPs as well as the available microarchitectures of this class of biocompatible IDPs, with potential applications in drug delivery and tissue engineering.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.
-
Abstract Peptide nanofibers are useful for many biological applications, including immunotherapy, tissue engineering, and drug delivery. The robust lengthwise assembly of these peptides into nanofibers is typically difficult to control, resulting in polydisperse fiber lengths and an incomplete understanding of how nanofiber length affects biological responses. Here, rationally designed capping peptides control the length of helical peptide nanofibers with unique precision. These designed peptides bind the tips of elongated nanofibers to shorten and narrow their length distributions. Demonstrating their use as immunotherapies, capped nanofibers are preferentially cross‐presented by dendritic cells compared to uncapped nanofibers. Due to increased cross‐presentation, these capped nanofibers trigger stronger CD8+T‐cell responses in mice than uncapped nanofibers. This strategy illustrates a means for controlling the length of supramolecular peptide nanofibers to modulate their immunogenicity in the context of immunotherapies.