skip to main content

Search for: All records

Creators/Authors contains: "Zavala, J. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The Planck All-Sky Survey to Analyze Gravitationally-lensed Extreme Starbursts project aims to identify a population of extremely luminous galaxies using the Planck all-sky survey and to explore the nature of their gas fuelling, induced starburst, and the resulting feedback that shape their evolution. Here, we report the identification of 22 high-redshift luminous dusty star-forming galaxies (DSFGs) at z = 1.1–3.3 drawn from a candidate list constructed using the Planck Catalogue of Compact Sources and Wide-field Infrared Survey Explorer all-sky survey. They are confirmed through follow-up dust continuum imaging and CO spectroscopy using AzTEC and the Redshift Search Receiver on the Large Millimeter Telescope Alfonso Serrano. Their apparent infrared luminosities span (0.1–3.1) × 1014 L⊙ (median of 1.2 × 1014 L⊙), making them some of the most luminous galaxies found so far. They are also some of the rarest objects in the sky with a source density of ≲0.01 deg−2. Our Atacama Large Millimeter/submillimeter Array 1.1 mm continuum observations with θ ≈ 0.4 arcsec resolution show clear ring or arc morphologies characteristic of strong lensing. Their lensing-corrected luminosity of LIR ≳ 1013 L⊙ (star-formation rate ≳ 103 M⊙ yr−1) indicates that they are the magnified versions of the most intrinsically luminous DSFGs found at these redshifts. Ourmore »spectral energy distribution analysis finds little detectable active galactic nucleus (AGN) activity despite their enormous luminosity, and any AGN activity present must be extremely heavily obscured.

    « less