We report the detection of the CO(12–11) line emission toward G09-83808 (or H-ATLAS J090045.4+004125), a strongly-lensed submillimeter galaxy at z = 6.02, with Atacama Large Millimeter/submillimeter Array observations. Combining previously detected [O iii] 88 μm, [N ii] 205 μm, and dust continuum at 0.6 mm and 1.5 mm, we investigate the physical properties of the multi-phase interstellar medium in G09-83808. A source-plane reconstruction reveals that the region of the CO(12–11) emission is compact ($R_\mathrm{{e, CO}}=0.49^{+0.29}_{-0.19}\:\mbox{kpc}$) and roughly coincides with that of the dust continuum. Non-local thermodynamic equilibrium radiative transfer modeling of CO spectral-line energy distribution reveals that most of the CO(12–11) emission comes from a warm (kinetic temperature of Tkin = 320 ± 170 K) and dense [log (nH2/cm−3) = 5.4 ± 0.6] gas, indicating that the warm and dense molecular gas is concentrated in the central 0.5 kpc region. The luminosity ratio in G09-83808 is estimated to be LCO(12-11)/LCO(6-5) = 1.1 ± 0.2. The high ratio is consistent with those in local active galactic nuclei (AGNs) and 6 < z < 7 quasars, the fact of which implies that G09-83808 would be a good target to explore dust-obscured AGNs in the epoch of reionization. In the reconstructed [O iii] 88 μm and [N ii] 205 μm cubes, we also find that a monotonic velocity gradientmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The 2 mm Mapping Obscuration to Reionization with ALMA (MORA) Survey was designed to detect high-redshift ( z ≳ 4), massive, dusty star-forming galaxies (DSFGs). Here we present two likely high-redshift sources, identified in the survey, whose physical characteristics are consistent with a class of optical/near-infrared (OIR)-invisible DSFGs found elsewhere in the literature. We first perform a rigorous analysis of all available photometric data to fit spectral energy distributions and estimate redshifts before deriving physical properties based on our findings. Our results suggest the two galaxies, called MORA-5 and MORA-9, represent two extremes of the “OIR-dark” class of DSFGs. MORA-5 ( z phot = 4.3 − 1.3 + 1.5 ) is a significantly more active starburst with a star formation rate (SFR) of 830 − 190 + 340 M ⊙ yr −1 compared to MORA-9 ( z phot = 4.3 − 1.0 + 1.3 ), whose SFR is a modest 200 − 60 + 250 M ⊙ yr −1 . Based on the stellar masses ( M ⋆ ≈ 10 10−11 M ⊙ ), space density ( n ∼ (5 ± 2) × 10 −6 Mpc −3 , which incorporates two other spectroscopically confirmed OIR-dark DSFGs in the MORAmore »
-
Abstract We present rest-frame optical emission-line flux ratio measurements for five
z > 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelative flux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolute spectrophotometry of the current version of the reductions. Compared toz ∼ 3 galaxies in the literature, thez > 5 galaxies have similar [Oiii ]λ 5008/Hβ ratios, similar [Oiii ]λ 4364/Hγ ratios, and higher (∼0.5 dex) [NeIII ]λ 3870/[OII ]λ 3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII ]λ 3870/[OII ]λ 3728, [Oiii ]λ 4364/Hγ , and [Oiii ]λ 5008/Hβ emission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( , units of cm s−1), low metallicity (Z /Z ⊙≲ 0.2), and very high pressure ( , units of cm−3). The combination of [Oiii ]λ 4364/Hγ and [Oiii ]λ (4960 + 5008)/Hβ line ratios indicate very high electron temperatures of , further implying metallicities ofZ /Z ⊙≲ 0.2 with the application of low-redshift calibrations for “T e -based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies atmore » -
Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5
σ are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz > 3 and 38% ± 12% of sources atz > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z < 3) are far more numerous than those atz > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300M ⊙yr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz > 2. Analysis of MORA sources’more »