Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

In this work we present a systematic review of novel and interesting behaviour we have observed in a simplified model of a MEMS oscillator. The model is third order and nonlinear, and we expressit as a single ODE for a displacement variable. We find that a single oscillator exhibits limitcycles whose amplitude is well approximated by perturbation methods. Two coupled identicaloscillators have inphase and outofphase modes as well as more complicated motions.Bothof the simple modes are stable in some regions of the parameter space while the bifurcationstructure is quite complex in other regions. This structure is symmetric; the symmetry is brokenby the introduction of detuning between the two oscillators. Numerical integration of the fullsystem is used to check all bifurcation computations. Each individual oscillator is based on a MEMS structure which moves within a laserdriven interference pattern. As the structure vibrates, it changes the interference gap, causing the quantity of absorbed light to change, producing a feedback loop between the motion and the absorbed light and resulting in a limit cycle oscillation. A simplified model of this MEMS oscillator, omitting parametric feedback and structural damping, is investigated using Lindstedt's perturbation method. Conditions are derived on the parameters of the model for a limit cycle to exist. The original model of the MEMS oscillator consists of two equations: a second order ODE which describes the physical motion of a microbeam, and a first order ODE which describes the heat conduction due to the laser. Starting with these equations, we derive a single governing ODE which is of third order and which leads to the definition of a linear operator called the MEMS operator. The addition of nonlinear terms in the model is shown to produce limit cycle behavior. The differential equations of motion of the system of two coupled oscillators are numerically integrated for varying values of the coupling parameter. It is shown that the inphase mode loses stability as the coupling parameter is reduced below a certain value, and is replaced by two new periodic motions which are born in a pitchfork bifurcation. Then as this parameter is further reduced, the form of the bifurcating periodic motions grows more complex, with yet additional bifurcations occurring. This sequence of bifurcations leads to a situation in which the only periodic motion is a stable outofphase mode. The complexity of the resulting sequence of bifurcations is illustrated through a series of diagrams based on numerical integration.more » « less

Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a noncontact, fullfield deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up to strains of over 10, even in the presence of very high strain gradients near a crack tip. The method is then applied to verify a theoretical prediction that the deformation field in a cracked sample under relaxation loading, i.e. constant applied boundary displacement, is stationary in time even as the stress relaxes by a factor of three.more » « less