skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zeichner, Sarah S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An irreversible increase in alluvial mudrock occurred with the Ordovician-Silurian evolution of bryophytes, challenging a paradigm that deep-rooted plants were responsible for this landscape shift. We tested the idea that increased primary production and plant organics promoted aggregation of clay into flocs in rivers and facilitated mud deposition on floodplains. In experiments, we observed that clay readily flocculated for organic and clay concentrations common to modern rivers, yielding settling velocities three orders of magnitude larger than those without organics. Using a transport model, we found that flocculation substantially increased mud deposition, resulting in muddier floodplains. Thus, organic-induced flocculation may have been more critical than deep-rooted plants in the proliferation of muddy floodplains.

    more » « less
  2. Abstract

    Many explanations for Eocene climate change focus on the Southern Ocean—where tectonics influenced oceanic gateways, ocean circulation reduced heat transport, and greenhouse gas declines prompted glaciation. To date, few studies focus on marine vertebrates at high latitudes to discern paleoecological and paleoenvironmental impacts of this climate transition. The Tertiary Eocene La Meseta (TELM) Formation has a rich fossil assemblage to characterize these impacts;Striatolamia macrota, an extinct (†) sand tiger shark, is abundant throughout the La Meseta Formation. Body size is often tracked to characterize and integrate across multiple ecological dimensions. †S. macrotabody size distributions indicate limited changes during TELMs 2–5 based on anterior tooth crown height (n = 450, mean = 19.6 ± 6.4 mm). Similarly, environmental conditions remained stable through this period based on δ18OPO4values from tooth enameloid (n = 42; 21.5 ± 1.6‰), which corresponds to a mean temperature of 22.0 ± 4.0°C. Our preliminaryεNd(n = 4) results indicate an early Drake Passage opening with Pacific inputs during TELM 2–3 (45–43 Ma) based on single unit variation with an overall radiogenic trend. Two possible hypotheses to explain these observations are (1) †S. macrotamodified its migration behavior to ameliorate environmental changes related to the Drake Passage opening, or (2) the local climate change was small and gateway opening had little impact. While we cannot rule out an ecological explanation, a comparison with climate model results suggests that increased CO2produces warm conditions that also parsimoniously explain the observations.

    more » « less