skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeiser, Clemens"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The application potential of singlet fission (SF), describing the spontaneous conversion of an excited singlet into two triplets, underlines the necessity to independently control SF rates, energetics and the optical band gap. Heterofission, whereby the singlet splits into triplets on chemically distinct chromophores, is a promising approach to control the above-mentioned parameters, but its details are not yet fully understood. Here, we investigate the photophysics of blends of two prototypical SF chromophores, tetracene (TET) and rubrene (RUB) using time-resolved photoluminescence spectroscopy and time-correlated single photon counting to explore the potential for heterofission in combinations of endothermic SF chromophores. 
    more » « less
  2. Abstract The fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments. For pentacene, where fission is exothermic, coherent mixing between the photoexcited singlet and triplet-pair states is promoted by vibronic resonances, which drives the fission process with little sensitivity to the vacancy concentration. Such vibronic resonances do not occur for endothermic materials such as tetracene, for which we find fission to be fully incoherent; a process that is shown to slow down with increasing vacancy concentration. 
    more » « less