skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zeng, Tianyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical frequency combs with equidistant frequency modes have revolutionized metrology and spectroscopy. The most widespread combs consist of periodic pulse trains generated by mode-locked lasers. However, it has recently been demonstrated that most semiconductor lasers based on Fabry–Pérot cavities, such as quantum well laser diodes, quantum cascade lasers, and quantum dot lasers, can enter an unconventional regime without traditional mode-locking mechanisms. The time-domain profile of these self-locked combs features a frequency-modulated (FM) wave with quasi-continuous-wave intensity and near-linear frequency chirp. The observation of the FM mode of operation in lasers with significantly different dynamics suggested that this mode is a fundamental operating state of semiconductor lasers, stemming from a deeper underlying mechanism. Thanks to recent theoretical and experimental advances, the origin of FM behavior has become clear. In this Perspective, we discuss the current status of FM combs in semiconductor lasers based on Fabry–Pérot cavities, focusing on their physical origin, modeling, characterization, bandwidth enhancement, and potential in future applications. 
    more » « less