- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Zensho, Chisa (2)
-
Dunnington, Erin L (1)
-
Ellsworth, Zachary (1)
-
Fu, Dan (1)
-
Hu, Hang (1)
-
Kim, Jonathan I (1)
-
Laskin, Julia (1)
-
Mehta, Nidhi R (1)
-
Weigand, Miranda (1)
-
Wong, Brian S (1)
-
Yang, Manxi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Super-resolution fluorescence microscopy has transformed biological imaging beyond the diffraction limit. However, many biomolecules, nanostructures, drug molecules, and metabolites cannot be easily tagged, requiring a label-free imaging approach. Stimulated Raman scattering (SRS) microscopy is a powerful platform for super-resolution label-free imaging, yet current super-resolution SRS approaches rely on photoswitching, saturation, or sample expansion, which are limited by labeling, photodamage, or signal dilution, respectively. Here, we combine SRS with 4Pi interferometry to enhance axial resolution nearly sevenfold. We report on improvements in imaging sensitivity and axial resolution using 80-nanometer polystyrene beads. Harnessing the improved axial resolution, we demonstrate super-resolution 4Pi-SRS imaging in resolving small lipid droplet structures in mammalian cells and lipid membranes inEscherichia colicells. Because 4Pi-SRS uses interferometry to improve axial resolution, it is orthogonal to all previous super-resolution SRS techniques; thus, it is straightforward to integrate it with existing methods to achieve much higher resolution chemical imaging than previously possible.more » « lessFree, publicly-accessible full text available January 2, 2027
-
Weigand, Miranda; Yang, Manxi; Hu, Hang; Zensho, Chisa; Laskin, Julia (, International Journal of Mass Spectrometry)
An official website of the United States government
