skip to main content


Search for: All records

Creators/Authors contains: "Zepeda, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from Gaia EDR3 and DR3, supplemented by additional available information where needed. After separating our sample into the different CEMP morphological groups in the Yoon–Beers diagram of absolute carbon abundance versus metallicity, we used the derived specific energies and actions ( E , J r , J ϕ , J z ) to cluster them into Chemodynamically Tagged Groups (CDTGs). We then analyzed the elemental-abundance dispersions within these clusters by comparing them to the dispersion of clusters that were generated at random. We find that, for the Group I (primarily CEMP- s and CEMP- r / s ) clustered stars, there exist statistically insignificant intracluster dispersions in [Fe/H], [C/Fe] c (evolution corrected carbon), and [Mg/Fe] when compared to the intracluster dispersions of randomly clustered Group I CEMP stars. In contrast, the Group II (primarily CEMP-no) stars exhibit clear similarities in their intracluster abundances, with very low, statistically significant, dispersions in [C/Fe] c and marginally significant results in [Mg/Fe]. These results strongly indicate that Group I CEMP stars received their carbon enhancements from local phenomena, such as mass transfer from an evolved binary companion in regions with extended star formation histories, while the CDTGs of Group II CEMP stars formed in low-metallicity environments that had already been enriched in carbon, likely from massive rapidly rotating ultra- and hyper-metal-poor stars and/or supernovae associated with high-mass early-generation stars. 
    more » « less
  2. Abstract

    We present results from high-resolution (R∼ 40,000) spectroscopic observations of over 200 metal-poor stars, mostly selected from the RAVE survey, using the Southern African Large Telescope. We were able to derive stellar parameters for a total of 108 stars; an additional sample of 50 stars from this same effort was previously reported on by Rasmussen et al. Among our newly reported observations, we identify 84 very metal-poor (VMP; [Fe/H] < −2.0, 53 newly identified) stars and three extremely metal-poor (EMP; [Fe/H] < −3.0, one newly identified) stars. The elemental abundances were measured for carbon, as well as several otherα-elements (Mg, Ca, Sc, and Ti), iron-peak elements (Mn, Co, Ni, and Zn), and neutron-capture elements (Sr, Ba, and Eu). Based on these measurements, the stars are classified by their carbon and neutron-capture abundances into carbon-enhanced metal-poor (CEMP; [C/Fe] > +0.70), CEMP subclasses, and by the level of theirr-process abundances. A total of 17 are classified as CEMP stars. There are 11 CEMP-rstars (eight newly identified), one CEMP-sstar (newly identified), two possible CEMP-istars (one newly identified), and three CEMP-no stars (all newly identified) in this work. We found 11 stars (eight newly identified) that are strongly enhanced inr-process elements (r-II; [Eu/Fe] > +0.70), 38 stars (31 newly identified) that are moderately enhanced inr-process elements (r-I; +0.30 < [Eu/Fe] ≤ + 0.70), and one newly identified limited-rstar.

     
    more » « less
  3. null (Ed.)