skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Anqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cells execute remarkable functions using biopolymers synthesized from natural building blocks. Engineering cells to leverage the vast array of synthesizable abiotic polymers could provide enhanced or entirely new cellular functions. Here we discuss the applications of in situ-synthesized abiotic polymers in three distinct domains: intracellular polymerization, cell-surface polymerization and extracellular polymerization. These advances have led to novel applications in various areas, such as cancer therapy, cell imaging, cellular activity manipulation, cell protection and electrode assembly. Examples of these synthetic approaches can be applied across all domains of life, ranging from microbes and cultured mammalian cells to plants and animals. Finally, we discuss challenges and future opportunities in this emerging field, which could enable new synthetic approaches to influence biological processes and functions. 
    more » « less
  2. Cell type-specific interfaces within living animals will be invaluable for achieving communication with identifiable cells over the long term, enabling applications across many scientific and medical fields. However, biological tissues exhibit complex and dynamic organization properties that pose serious challenges for chronic cell-specific interfacing. A new technology, combining chemistry and molecular biology, has emerged to address this challenge: genetically targeted chemical assembly (GTCA), in which specific cells are genetically programmed (even in wild-type or non-transgenic animals, including mammals) to chemically construct non-biological structures. Here, we discuss recent progress in genetically targeted construction of materials and outline opportunities that may expand the GTCA toolbox, including specific chemical processes involving novel monomers, catalysts and reaction regimes both de cellula (from the cell) and ad cellula (towards the cell); different GTCA-compatible reaction conditions with a focus on light-based patterning; and potential applications of GTCA in research and clinical settings. 
    more » « less
  3. Genetically engineered neurons express membrane-bound enzymes that can catalyze oxidative polymerization on the cell surface. 
    more » « less