skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Anwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Efficient manipulation of quantum states is a key step towards applications in quantum information, quantum metrology, and nonlinear optics. Recently, atomic arrays have been shown to be a promising system for exploring topological quantum optics and robust control of quantum states, where the inherent nonlinearity is included through long-range hoppings. Here we show that a one-dimensional atomic array in a periodic magnetic field exhibits characteristic properties associated with an effective two-dimensional Hofstadter-butterfly-like model. Our work points out super- and sub-radiant topological edge states localized at the boundaries of the atomic array despite featuring long-range interactions, and opens an avenue of exploring an interacting quantum optical platform with synthetic dimensions.

     
    more » « less