skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, B_Theodore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the external reverse shock (RS) region of relativistic jets as the origin of X-ray afterglows of jetted tidal disruption events (TDEs) that exhibit luminous jets accompanied by fast-declining nonthermal X-ray emissions. We model the dynamics of jet propagating within an external density medium, accounting for continuous energy injection driven by accretion activities. We compute the time-dependent synchrotron and inverse Compton emissions from the RS region. Our analysis demonstrates that the RS scenario can potentially explain the X-ray light curves and spectra of four jetted TDEs, namely, AT 2022cmc, Swift J1644, Swift J2058, and Swift J1112. Notably, the rapid steepening of the late-stage X-ray light curves can be attributed jointly to the jet break and cessation of the central engine as the accretion rate drops below the Eddington limit. Using parameters obtained from X-ray data fitting, we also discuss the prospects forγ-ray and neutrino detection. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026
  2. Abstract AT 2022cmc is a recently documented tidal disruption event that exhibits a luminous jet, accompanied by fast-declining X-ray and long-lasting radio and millimeter emission. Motivated by the distinct spectral and temporal signatures between the X-ray and radio observations, we propose a multizone model involving relativistic jets with different Lorentz factors. We systematically study the evolution of faster and slower jets in an external density profile, considering the continuous energy injection rate associated with time-dependent accretion rates before and after the mass fallback time. We investigate time-dependent multiwavelength emission from both the forward shock (FS) and reverse shock (RS) regions of the fast and slow jets, in a self-consistent manner. Our analysis demonstrates that the energy injection rate can significantly impact the jet evolution and subsequently influence the lightcurves. We find that the X-ray spectra and lightcurves could be described by electron synchrotron emission from the RS of the faster jet, in which the late-time X-ray upper limits, extending to 400 days after the disruption, could be interpreted as a jet break. Meanwhile, the radio observations can be interpreted as a result of synchrotron emission from the FS region of the slower jet. We also discuss prospects for testing the model with current and future observations. 
    more » « less
  3. Abstract The detection of high-energy neutrino signals from the nearby Seyfert galaxy NGC 1068 provides us with an opportunity to study nonthermal processes near the center of supermassive black holes. Using the IceCube and latest Fermi-LAT data, we present general multimessenger constraints on the energetics of cosmic rays and the size of neutrino emission regions. In the photohadronic scenario, the required cosmic-ray luminosity should be larger than ∼1%−10% of the Eddington luminosity and the emission radius should be ≲15RSin low-βplasma and ≲3RSin high-βplasma. The leptonic scenario overshoots the NuSTAR or Fermi-LAT data for any emission radii we consider, and the required gamma-ray luminosity is much larger than the Eddington luminosity. The beta-decay scenario also violates not only the energetics requirement but also gamma-ray constraints, especially when the Bethe–Heitler and photomeson production processes are consistently considered. Our results rule out the leptonic and beta-decay scenarios in a nearly model-independent manner and support hadronic mechanisms in magnetically powered coronae if NGC 1068 is a source of high-energy neutrinos. 
    more » « less
  4. ABSTRACT Very high energy (VHE) γ-rays ($$\gtrsim\!\! 0.1\rm ~TeV$$) and neutrinos are crucial for identifying accelerators of ultra-high-energy cosmic rays (UHECRs), but this is challenging especially for UHECR nuclei. In this work, we develop a numerical code to solve the transport equation for UHECRs and their secondaries, where both nuclear and electromagnetic cascades are taken into account self-consistently, considering steady UHECR accelerators such as radio galaxies. In particular, we focus on Centaurus A, which has been proposed as one of the most promising UHECR sources in the local Universe. Motivated by observations of extended VHE γ-ray emission from its kiloparsec-scale jet by the High Energy Stereoscopic System (H.E.S.S.), we study interactions between UHECRs accelerated in the large-scale jet and various target photon fields including blazar-like beamed core emission, and present a quantitative study on VHE γ-ray signatures of UHECR nuclei, including the photodisintegration and Bethe–Heitler pair production processes. We show that VHE γ-rays from UHECR nuclei could be detected by the ground-based γ-ray telescopes given that the dominant composition of UHECRs consists of intermediate-mass (such as oxygen) nuclei. 
    more » « less
  5. ABSTRACT Magnetars have been considered as progenitors of magnetar giant flares (MGFs) and fast radio bursts (FRBs). We present detailed studies on afterglow emissions caused by bursts that occur in their wind nebulae and surrounding baryonic ejecta. In particular, following the bursts-in-bubble model, we analytically and numerically calculate spectra and light curves of such afterglow emission. We scan parameter space for the detectability of radio signals, and find that a burst with ∼1045 erg is detectable with the Very Large Array or other next-generation radio facilities. The detection of multiwavelength afterglow emission from MGFs and/or FRBs is of great significance for their localization and revealing their progenitors, and we estimate the number of detectable afterglow events. 
    more » « less