Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Ensuring the frequency stability of electric grids with increasing renewable resources is a key problem in power system operations. In recent years, a number of advanced controllers have been designed to optimize frequency control. These controllers, however, almost always assume that the net load in the system remains constant over a sufficiently long time. Given the intermittent and uncertain nature of renewable resources, it is becoming important to explicitly consider net load that is time-varying. This paper proposes an adaptive approach to frequency control in power systems with significant time-varying net load. We leverage the advances in short-term load forecasting, where the net load in the system can be accurately predicted using weather and other features. We integrate these predictions into the design of adaptive controllers, which can be seamlessly combined with most existing controllers including conventional droop control and emerging neural network-based controllers. We prove that the overall control architecture achieves frequency restoration decentralizedly. Case studies verify that the proposed method improves both transient and frequency-restoration performances compared to existing approaches.more » « lessFree, publicly-accessible full text available December 13, 2024
-
Free, publicly-accessible full text available November 2, 2024