skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Chao."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2024
  2. Free, publicly-accessible full text available August 20, 2024
  3. Abstract Motivation

    Branch lengths and topology of a species tree are essential in most downstream analyses, including estimation of diversification dates, characterization of selection, understanding adaptation, and comparative genomics. Modern phylogenomic analyses often use methods that account for the heterogeneity of evolutionary histories across the genome due to processes such as incomplete lineage sorting. However, these methods typically do not generate branch lengths in units that are usable by downstream applications, forcing phylogenomic analyses to resort to alternative shortcuts such as estimating branch lengths by concatenating gene alignments into a supermatrix. Yet, concatenation and other available approaches for estimating branch lengths fail to address heterogeneity across the genome.

    Results

    In this article, we derive expected values of gene tree branch lengths in substitution units under an extension of the multispecies coalescent (MSC) model that allows substitutions with varying rates across the species tree. We present CASTLES, a new technique for estimating branch lengths on the species tree from estimated gene trees that uses these expected values, and our study shows that CASTLES improves on the most accurate prior methods with respect to both speed and accuracy.

    Availability and implementation

    CASTLES is available at https://github.com/ytabatabaee/CASTLES.

  4. Takahashi, Aya (Ed.)
    Abstract Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many conditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical data, weighting improves congruence with concatenation and increases support. Together, our results show that weighting, enabledmore »by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the incongruence often observed across analytical pipelines.« less
    Free, publicly-accessible full text available December 1, 2023
  5. Free, publicly-accessible full text available February 1, 2024
  6. Sparse linear algebra is an important kernel in many different applications. Among various sparse general matrix-matrix multiplication (SpGEMM) algorithms, Gustavson’s column-wise SpGEMM has good locality when reading input matrix and can be easily parallelized by distributing the computation of different columns of an output matrix to different processors. However, the sparse accumulation (SPA) step in column-wise SpGEMM, which merges partial sums from each of the multiplications by the row indices, is still a performance bottleneck. The state-of-the-art software implementation uses a hash table for partial sum search in the SPA, which makes SPA the largest contributor to the execution time of SpGEMM. There are three reasons that cause the SPA to become the bottleneck: (1) hash probing requires data-dependent branches that are difficult for a branch predictor to predict correctly; (2) the accumulation of partial sum is dependent on the results of the hash probing, which makes it difficult to hide the hash probing latency; and (3) hash collision requires time-consuming linear search and optimizations to reduce these collisions require an accurate estimation of the number of non-zeros in each column of the output matrix. This work proposes ASA architecture to accelerate the SPA. ASA overcomes the challenges of SPAmore »by (1) executing the partial sum search and accumulate with a single instruction through ISA extension to eliminate data-dependent branches in hash probing, (2) using a dedicated on-chip cache to perform the search and accumulation in a pipelined fashion, (3) relying on the parallel search capability of a set-associative cache to reduce search latency, and (4) delaying the merging of overflowed entries. As a result, ASA achieves an average of 2.25× and 5.05× speedup as compared to the state-of-the-art software implementation of a Markov clustering application and its SpGEMM kernel, respectively. As compared to a state-of-the-art hashing accelerator design, ASA achieves an average of 1.95× speedup in the SpGEMM kernel.« less
    Free, publicly-accessible full text available December 31, 2023
  7. Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal lineages of antibody-secreting b cells that have evolved from a common naïve B cell. Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal lineage evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective pressure due tomore »changes in affinity binding; it enables scalable simulations of large numbers of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and measuring their properties. Our results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a simple post-processing of their results, where short branches are contracted, leads to inferences that are better than alternative methods.« less
    Free, publicly-accessible full text available December 6, 2023
  8. Free, publicly-accessible full text available November 30, 2023
  9. Free, publicly-accessible full text available January 1, 2024
  10. Free, publicly-accessible full text available November 28, 2023