skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in itsmore »results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables.« less
    Free, publicly-accessible full text available August 23, 2023
  2. Free, publicly-accessible full text available October 1, 2023
  3. Abstract Individual passenger travel patterns have significant value in understanding passenger’s behavior, such as learning the hidden clusters of locations, time, and passengers. The learned clusters further enable commercially beneficial actions such as customized services, promotions, data-driven urban-use planning, peak hour discovery, and so on. However, the individualized passenger modeling is very challenging for the following reasons: 1) The individual passenger travel data are multi-dimensional spatiotemporal big data, including at least the origin, destination, and time dimensions; 2) Moreover, individualized passenger travel patterns usually depend on the external environment, such as the distances and functions of locations, which are ignored in most current works. This work proposes a multi-clustering model to learn the latent clusters along the multiple dimensions of Origin, Destination, Time, and eventually, Passenger (ODT-P). We develop a graph-regularized tensor Latent Dirichlet Allocation (LDA) model by first extending the traditional LDA model into a tensor version and then applies to individual travel data. Then, the external information of stations is formulated as semantic graphs and incorporated as the Laplacian regularizations; Furthermore, to improve the model scalability when dealing with massive data, an online stochastic learning method based on tensorized variational Expectation-Maximization algorithm is developed. Finally, a case studymore »based on passengers in the Hong Kong metro system is conducted and demonstrates that a better clustering performance is achieved compared to state-of-the-arts with the improvement in point-wise mutual information index and algorithm convergence speed by a factor of two.« less
    Free, publicly-accessible full text available July 1, 2023
  4. Abstract

    This paper describes a set of Near-Real-Time (NRT) Vegetation Index (VI) data products for the Conterminous United States (CONUS) based on Moderate Resolution Imaging Spectroradiometer (MODIS) data from Land, Atmosphere Near-real-time Capability for EOS (LANCE), an openly accessible NASA NRT Earth observation data repository. The data set offers a variety of commonly used VIs, including Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Mean-referenced Vegetation Condition Index (MVCI), Ratio to Median Vegetation Condition Index (RMVCI), and Ratio to previous-year Vegetation Condition Index (RVCI). LANCE enables the NRT monitoring of U.S. cropland vegetation conditions within 24 hours of observation. With more than 20 years of observations, this continuous data set enables geospatial time series analysis and change detection in many research fields such as agricultural monitoring, natural resource conservation, environmental modeling, and Earth system science. The complete set of VI data products described in the paper is openly distributed via Web Map Service (WMS) and Web Coverage Service (WCS) as well as the VegScape web application (https://nassgeodata.gmu.edu/VegScape/).

  5. Free, publicly-accessible full text available August 1, 2023
  6. Free, publicly-accessible full text available May 2, 2023
  7. Free, publicly-accessible full text available June 1, 2023
  8. Free, publicly-accessible full text available June 1, 2023
  9. Free, publicly-accessible full text available September 21, 2023