skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Chuanyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leitner, Thomas (Ed.)
    Abstract Transcription regulatory sequences (TRSs), which occur upstream of structural and accessory genes as well as the 5’ end of a coronavirus genome, play a critical role in discontinuous transcription in coronaviruses. We introduce two problems collectively aimed at identifying these regulatory sequences as well as their associated genes. First, we formulate the TRS Identification problem of identifying TRS sites in a coronavirus genome sequence with prescribed gene locations. We introduce CORSID-A, an algorithm that solves this problem to optimality in polynomial time. We demonstrate that CORSID-A outperforms existing motif-based methods in identifying TRS sites in coronaviruses. Second, we demonstrate for the first time how TRS sites can be leveraged to identify gene locations in the coronavirus genome. To that end, we formulate the TRS and Gene Identification problem of simultaneously identifying TRS sites and gene locations in unannotated coronavirus genomes. We introduce CORSID to solve this problem, which includes a web-based visualization tool to explore the space of near-optimal solutions. We show that CORSID outperforms stateof-the-art gene finding methods in coronavirus genomes. Furthermore, we demonstrate that CORSID enables de novo identification of TRS sites and genes in previously unannotated coronavirus genomes. CORSID is the first method to perform accuratemore »and simultaneous identification of TRS sites and genes in coronavirus genomes without the use of any prior information.« less
  2. Abstract

    Genes in SARS-CoV-2 and other viruses in the order ofNidoviralesare expressed by a process of discontinuous transcription which is distinct from alternative splicing in eukaryotes and is mediated by the viral RNA-dependent RNA polymerase. Here, we introduce the DISCONTINUOUS TRANSCRIPT ASSEMBLYproblem of finding transcripts and their abundances given an alignment of paired-end short reads under a maximum likelihood model that accounts for varying transcript lengths. We show, using simulations, that our method, JUMPER, outperforms existing methods for classical transcript assembly. On short-read data of SARS-CoV-1, SARS-CoV-2 and MERS-CoV samples, we find that JUMPER not only identifies canonical transcripts that are part of the reference transcriptome, but also predicts expression of non-canonical transcripts that are supported by subsequent orthogonal analyses. Moreover, application of JUMPER on samples with and without treatment reveals viral drug response at the transcript level. As such, JUMPER enables detailed analyses ofNidoviralestranscriptomes under varying conditions.

  3. Abstract

    Intra-tumor heterogeneity renders the identification of somatic single-nucleotide variants (SNVs) a challenging problem. In particular, low-frequency SNVs are hard to distinguish from sequencing artifacts. While the increasing availability of multi-sample tumor DNA sequencing data holds the potential for more accurate variant calling, there is a lack of high-sensitivity multi-sample SNV callers that utilize these data. Here we report Moss, a method to identify low-frequency SNVs that recur in multiple sequencing samples from the same tumor. Moss provides any existing single-sample SNV caller the ability to support multiple samples with little additional time overhead. We demonstrate that Moss improves recall while maintaining high precision in a simulated dataset. On multi-sample hepatocellular carcinoma, acute myeloid leukemia and colorectal cancer datasets, Moss identifies new low-frequency variants that meet manual review criteria and are consistent with the tumor’s mutational signature profile. In addition, Moss detects the presence of variants in more samples of the same tumor than reported by the single-sample caller. Moss’ improved sensitivity in SNV calling will enable more detailed downstream analyses in cancer genomics.