skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Daiwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Delineating associations between images and covariates is a central aim of imaging studies. To tackle this problem, we propose a novel non-parametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks. Our method incorporates spatial smoothness, handles subject heterogeneity, and provides straightforward interpretations. It is also highly flexible and accurate, making it ideal for capturing complex association patterns. We establish estimation and selection consistency and derive asymptotic error bounds. We demonstrate the method’s advantages through intensive simulations and analyses of two functional magnetic resonance imaging data sets. 
    more » « less