The inability to re‐process thermosets hinders their utility and sustainability. An ideal material should combine closed‐loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels–Alder cycloadditions to enable both reversible disassembly into a polymer melt and on‐demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan‐capped bis‐maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush‐like polymers.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The inability to re‐process thermosets hinders their utility and sustainability. An ideal material should combine closed‐loop recycling and upcycling capabilities. This trait is realized in polydimethylsiloxane bottlebrush networks using thermoreversible Diels–Alder cycloadditions to enable both reversible disassembly into a polymer melt and on‐demand reconfiguration to an elastomer of either lower or higher stiffness. The crosslink density was tuned by loading the functionalized networks with a controlled fraction of dormant crosslinkers and crosslinker scavengers, such as furan‐capped bis‐maleimide and anthracene, respectively. The resulting modulus variations precisely followed the stoichiometry of activated furan and maleimide moieties, demonstrating the lack of side reactions during reprocessing. The presented circularity concept is independent from the backbone or side chain chemistry, making it potentially applicable to a wide range of brush‐like polymers.
-
Abstract Heating‐triggered shape actuation is vital for biomedical applications. The likely overheating and subsequent damage of surrounding tissue, however, severely limit its utilization in vivo. Herein, cooling‐triggered shapeshifting is achieved by designing dual‐network hydrogels that integrate a permanent network for elastic energy storage and a reversible network of hydrophobic crosslinks for “freezing” temporary shapes when heated. Upon cooling to 10 °C, the hydrophobic interactions weaken and allow recovery of the original shape, and thus programmable shape alterations. Further, multiple temporary shapes can be encoded independently at either different temperatures or different times during the isothermal network formation. The ability of these hydrogels to shapeshift at benign conditions may revolutionize biomedical implants and soft robotics.
-
Abstract The ability of living species to transition between rigid and flexible shapes represents one of their survival mechanisms, which has been adopted by various human technologies. Such transition is especially desired in medical devices as rigidity facilitates the implantation process, while flexibility and softness favor biocompatibility with surrounding tissue. Traditional thermoplastics cannot match soft tissue mechanics, while gels leach into the body and alter their properties over time. Here, a single‐component system with an unprecedented drop of Young's modulus by up to six orders of magnitude from the GPa to kPa level at a controlled temperature within 28–43
° C is demonstrated. This approach is based on brush‐like polymer networks with crystallizable side chains, e.g., poly(valerolactone), affording independent control of melting temperature and Young's modulus by concurrently altering side chain length and crosslink density. Softening down to the tissue level at the physiological temperature allows the design of tissue‐adaptive implants that can be inserted as rigid devices followed by matching the surrounding tissue mechanics at body temperature. This transition also enables thermally triggered release of embedded drugs for anti‐inflammatory treatment.