skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Di"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2023
  2. Free, publicly-accessible full text available October 1, 2023
  3. Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g. , ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi 1.25 AlMnO 3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.
    Free, publicly-accessible full text available July 15, 2023
  4. Large-scale parallel file systems (PFSs) play an essential role in high-performance computing (HPC). However, despite their importance, their reliability is much less studied or understood compared with that of local storage systems or cloud storage systems. Recent failure incidents at real HPC centers have exposed the latent defects in PFS clusters as well as the urgent need for a systematic analysis. To address the challenge, we perform a study of the failure recovery and logging mechanisms of PFSs in this article. First, to trigger the failure recovery and logging operations of the target PFS, we introduce a black-box fault injection tool called   PFault , which is transparent to PFSs and easy to deploy in practice.   PFault emulates the failure state of individual storage nodes in the PFS based on a set of pre-defined fault models and enables examining the PFS behavior under fault systematically. Next, we apply PFault to study two widely used PFSs: Lustre and BeeGFS. Our analysis reveals the unique failure recovery and logging patterns of the target PFSs and identifies multiple cases where the PFSs are imperfect in terms of failure handling. For example, Lustre includes a recovery component called LFSCK to detect and fixmore »PFS-level inconsistencies, but we find that LFSCK itself may hang or trigger kernel panics when scanning a corrupted Lustre. Even after the recovery attempt of LFSCK, the subsequent workloads applied to Lustre may still behave abnormally (e.g., hang or report I/O errors). Similar issues have also been observed in BeeGFS and its recovery component BeeGFS-FSCK. We analyze the root causes of the abnormal symptoms observed in depth, which has led to a new patch set to be merged into the coming Lustre release. In addition, we characterize the extensive logs generated in the experiments in detail and identify the unique patterns and limitations of PFSs in terms of failure logging. We hope this study and the resulting tool and dataset can facilitate follow-up research in the communities and help improve PFSs for reliable high-performance computing.« less
    Free, publicly-accessible full text available May 31, 2023
  5. Free, publicly-accessible full text available April 3, 2023
  6. Free, publicly-accessible full text available May 27, 2023
  7. Free, publicly-accessible full text available March 1, 2023
  8. Free, publicly-accessible full text available June 1, 2023
  9. Abstract

    Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials.

  10. Abstract Microstructural analysis of the BaZrO 3 (BZO)/YBa 2 Cu 3 O 7 (YBCO) interface has revealed a highly defective and oxygen deficient 2-3 nm thick YBCO column surrounding the BZO one-dimensional artificial pinning centers (1D-APCs). The resulting semi-coherent interface is the consequence of the ∼7.7% BZO/YBCO lattice mismatch and is responsible for the low pinning efficiency of BZO 1D-APCs. Herein, we report an interface engineering approach of dynamic Ca/Cu replacement on YBCO lattice to reduce/eliminate the BZO/YBCO lattice mismatch for improved pinning at a wide angular range of the magnetic field orientation. The Ca/Cu replacement induces a local elongation of the YBCO c-lattice near the BZO/YBCO interface, thereby ensuring a reduction in the BZO/YBCO lattice mismatch to ∼1.4% and a coherent BZO/YBCO interface. This has resulted in enhanced pinning at B//c-axis and a broad angular range of B-field orientation. For example, the 6 vol.% BZO/YBCO film with interface engineering exhibits F p ∼158 GN/m 3 at 65 K and B//c-axis, which is 440% higher than the ∼36.1 GN/m 3 for the reference 6% BZO/YBCO sample, and enhanced J c and F p in a wide angular range up to ∼ 80°. This result illustrates a facile scheme for engineeringmore »1D-APC/YBCO interface to resume the pristine pinning efficiency of the 1D-APCs.« less
    Free, publicly-accessible full text available May 1, 2023