skip to main content

Search for: All records

Creators/Authors contains: "Zhang, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an O( log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching upper bound of expected O( log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest quality or a quorum rule can affect the emigration process.
    Free, publicly-accessible full text available January 1, 2023
  2. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a Ω(log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest qualities or a quorum rule can affect the emigration process. In particular, we find that a quorum threshold that is high enough causes transports to the inferior nest to cease to happen after O(log n) rounds when there are two nests in the environment.
  3. We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modelled as a probabilistic agent with limited power, and there is no central control governing the ants. We show a (log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Further, we show a matching upper bound of expected O(log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest qualities or a quorum rule can affect the emigration process. In particular, we find that a quorum threshold that is high enough causes transports to the inferior nest to cease to happen after O(log n) rounds when there are two nests in the environment.
  4. Free, publicly-accessible full text available June 1, 2023
  5. Free, publicly-accessible full text available June 1, 2023