Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 3, 2026
-
Free, publicly-accessible full text available December 20, 2025
-
Summary Global food production faces persistent threats from environmental challenges and pathogenic attacks, leading to significant yield losses. Conventional strategies to combat pathogens, such as fungicides and disease‐resistant breeding, are limited by environmental contamination and emergence of pathogen resistance. Herein, we engineered sunlight‐sensitive and biodegradable carbon dots (CDs) capable of generating reactive oxygen species (ROS), offering a novel and sustainable approach for plant protection. Our study demonstrates that CDs function as dual‐purpose materials: priming plant immune responses and serving as broad‐spectrum antifungal agents. Foliar application of CDs generated ROS under light, and the ROS could damage the plant cell wall and trigger cell wall‐mediated immunity. Immune activation enhanced plant resistance against pathogens without compromising photosynthetic efficiency or yield. Specifically, spray treatment with CDs at 240 mg/L (2 mL per plant) reduced the incidence of grey mould inN. benthamianaand tomato leaves by 44% and 12%, respectively, and late blight in tomato leaves by 31%. Moreover, CDs (480 mg/L, 1 mL) combined with continuous sunlight irradiation (simulated by xenon lamp, 9.4 × 105lux) showed a broad‐spectrum antifungal activity. The inhibition ratios for mycelium growth were 66.5% forP. capsici, 8% forS. sclerotiorumand 100% forB. cinerea, respectively. Mechanistic studies revealed that CDs effectively inhibited mycelium growth by damaging hyphae and spore structures, thereby disrupting the propagation and vitality of pathogens. These findings suggest that CDs offer a promising, eco‐friendly strategy for sustainable crop protection, with potential for practical agricultural applications that maintain crop yields and minimize environmental impact.more » « lessFree, publicly-accessible full text available March 16, 2026
-
Free, publicly-accessible full text available December 13, 2025
-
Free, publicly-accessible full text available December 10, 2025
-
The centrosomal aster is a mobile and adaptable cellular organelle that exerts and transmits forces necessary for tasks such as nuclear migration and spindle positioning. Recent experimental and theoretical studies of nematode and human cells demonstrate that pulling forces on asters by cortically anchored force generators are dominant during such processes. Here, we present a comprehensive investigation of the S-model (S for stoichiometry) of aster dynamics based solely on such forces. The model evolves the astral centrosome position, a probability field of cell-surface motor occupancy by centrosomal microtubules (under an assumption of stoichiometric binding), and free boundaries of unattached, growing microtubules. We show how cell shape affects the stability of centering of the aster, and its transition to oscillations with increasing motor number. Seeking to understand observations in single-cell nematode embryos, we use highly accurate simulations to examine the nonlinear structures of the bifurcations, and demonstrate the importance of binding domain overlap to interpreting genetic perturbation experiments. We find a generally rich dynamical landscape, dependent upon cell shape, such as internal constant-velocity equatorial orbits of asters that can be seen as traveling wave solutions. Finally, we study the interactions of multiple asters which we demonstrate an effective mutual repulsion due to their competition for surface force generators. We find, amazingly, that centrosomes can relax onto the vertices of platonic and nonplatonic solids, very closely mirroring the results of the classical Thomson problem for energy-minimizing configurations of electrons constrained to a sphere and interacting via repulsive Coulomb potentials. Our findings both explain experimental observations, providing insights into the mechanisms governing spindle positioning and cell division dynamics, and show the possibility of new nonlinear phenomena in cell biology. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 3, 2026
An official website of the United States government

Full Text Available