skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 27, 2025
  2. Humans often use natural language instructions to control and interact with robots for task execution. This poses a big challenge to robots that need to not only parse and understand human instructions but also realise semantic understanding of an unknown environment and its constituent elements. To address this challenge, this study presents a vision-language model (VLM)-driven approach to scene understanding of an unknown environment to enable robotic object manipulation. Given language instructions, a pretrained vision-language model built on open-sourced Llama2-chat (7B) as the language model backbone is adopted for image description and scene understanding, which translates visual information into text descriptions of the scene. Next, a zero-shot-based approach to fine-grained visual grounding and object detection is developed to extract and localise objects of interest from the scene task. Upon 3D reconstruction and pose estimate establishment of the object, a code-writing large language model (LLM) is adopted to generate high-level control codes and link language instructions with robot actions for downstream tasks. The performance of the developed approach is experimentally validated through table-top object manipulation by a robot. 
    more » « less
    Free, publicly-accessible full text available August 30, 2025
  3. Free, publicly-accessible full text available July 26, 2025
  4. In recent years, federated minimax optimization has attracted growing interest due to its extensive applications in various machine learning tasks. While Smoothed Alternative Gradient Descent Ascent (Smoothed-AGDA) has proved successful in centralized nonconvex minimax optimization, how and whether smoothing techniques could be helpful in a federated setting remains unexplored. In this paper, we propose a new algorithm termed Federated Stochastic Smoothed Gradient Descent Ascent (FESS-GDA), which utilizes the smoothing technique for federated minimax optimization. We prove that FESS-GDA can be uniformly applied to solve several classes of federated minimax problems and prove new or better analytical convergence results for these settings. We showcase the practical efficiency of FESS-GDA in practical federated learning tasks of training generative adversarial networks (GANs) and fair classification. 
    more » « less
    Free, publicly-accessible full text available July 19, 2025
  5. Free, publicly-accessible full text available June 21, 2025
  6. Free, publicly-accessible full text available June 18, 2025
  7. Free, publicly-accessible full text available July 1, 2025
  8. Human-Robot Collaboration (HRC) aims to create environments where robots can understand workspace dynamics and actively assist humans in operations, with the human intention recognition being fundamental to efficient and safe task fulfillment. Language-based control and communication is a natural and convenient way to convey human intentions. However, traditional language models require instructions to be articulated following a rigid, predefined syntax, which can be unnatural, inefficient, and prone to errors. This paper investigates the reasoning abilities that emerged from the recent advancement of Large Language Models (LLMs) to overcome these limitations, allowing for human instructions to be used to enhance human-robot communication. For this purpose, a generic GPT 3.5 model has been fine-tuned to interpret and translate varied human instructions into essential attributes, such as task relevancy and tools and/or parts required for the task. These attributes are then fused with perceived on-going robot action to generate a sequence of relevant actions. The developed technique is evaluated in a case study where robots initially misinterpreted human actions and picked up wrong tools and parts for assembly. It is shown that the fine-tuned LLM can effectively identify corrective actions across a diverse range of instructional human inputs, thereby enhancing the robustness of human-robot collaborative assembly for smart manufacturing. 
    more » « less
    Free, publicly-accessible full text available May 31, 2025
  9. Free, publicly-accessible full text available July 30, 2025
  10. Prediction of surface topography in milling usually requires complex kinematics and dynamics modeling of the milling process, plus solving physical models of surface generation is a daunting task. This paper presents a multimodal data-driven machine learning (ML) method to predict milled surface topography. The proposed method predicts the height map of the surface topography by fusing process parameters and in-process acoustic information as model inputs. This method has been validated by comparing the predicted surface topography with the measured data. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025