- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jiang, Jun (3)
-
Mukamel, Shaul (3)
-
Ye, Sheng (3)
-
Zhang, Guozhen (3)
-
Zhang, Jinxiao (3)
-
Zhong, Kai (3)
-
Hu, Wei (2)
-
Chong, Yuanyuan (1)
-
Guo, Sibei (1)
-
Hirst, Jonathan D. (1)
-
Jiang, Bin (1)
-
Li, Xin (1)
-
Luo, Yi (1)
-
Zhang, Yaolong (1)
-
Zhao, Luyuan (1)
-
Zhou, Huiting (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ye, Sheng; Zhong, Kai; Zhang, Jinxiao; Hu, Wei; Hirst, Jonathan D.; Zhang, Guozhen; Mukamel, Shaul; Jiang, Jun (, Journal of the American Chemical Society)null (Ed.)
-
Ye, Sheng; Hu, Wei; Li, Xin; Zhang, Jinxiao; Zhong, Kai; Zhang, Guozhen; Luo, Yi; Mukamel, Shaul; Jiang, Jun (, Proceedings of the National Academy of Sciences)UV absorption is widely used for characterizing proteins structures. The mapping of UV spectra to atomic structure of proteins relies on expensive theoretical simulations, circumventing the heavy computational cost which involves repeated quantum-mechanical simulations of excited-state properties of many fluctuating protein geometries, which has been a long-time challenge. Here we show that a neural network machine-learning technique can predict electronic absorption spectra of N -methylacetamide (NMA), which is a widely used model system for the peptide bond. Using ground-state geometric parameters and charge information as descriptors, we employed a neural network to predict transition energies, ground-state, and transition dipole moments of many molecular-dynamics conformations at different temperatures, in agreement with time-dependent density-functional theory calculations. The neural network simulations are nearly 3,000× faster than comparable quantum calculations. Machine learning should provide a cost-effective tool for simulating optical properties of proteins.more » « less