Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) has a significant impact on forecasts of tropical cyclone (TC) structure and intensity. VED uncertainties in PBL parameterizations can be partly attributed to the model’s inability to represent roll vortices (RV). In this study, RV effects on turbulent fluxes derived from a large eddy simulation (LES) by Li et al. (Geophys. Res. Lett., 2021, 48, e2020GL090703) are added to the VED parameterization of the PBL scheme within the operational Hurricane Weather Research and Forecasting (HWRF) model. RV contribution to VED is parameterized through a coefficient and varies with the RV intensity and velocity scale. A modification over land has also been implemented. This modified VED parameterization is compared with the original wind-speed-dependent VED scheme in HWRF. Retrospective HWRF forecasts of Hurricanes Florence (2018) and Laura (2020) are analyzed to evaluate the impacts of the modified VED scheme on landfalling hurricane forecasts. Results show that the modified PBL scheme with the RV effect leads to an improvement in 10-m maximum wind speed forecasts of 14%–31%, with a neutral to positive improvement for track forecasts. Improved wind structure and precipitation forecasts against observations are also noted with the modified PBL scheme. Further diagnoses indicate that the revised PBL scheme enhances moist entropy in the boundary layer over land, leading to improved TC intensity prediction compared to the original scheme.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 30, 2024
-
Abstract While recent observational studies of intensifying (IN) versus steady-state (SS) hurricanes have noted several differences in their axisymmetric and asymmetric structures, there remain gaps in the characterization of these differences in a fully three-dimensional framework. To address these limitations, this study investigates differences in the shear-relative asymmetric structure between IN and SS hurricanes using airborne Doppler radar data from a dataset covering an extended period of time. Statistics from individual cases show that IN cases are characterized by peak wavenumber-1 ascent concentrated in the upshear-left (USL) quadrant at ∼12-km height, consistent with previous studies. Moderate updrafts (2–6 m s−1) occur more frequently in the downshear eyewall for IN cases than for SS cases, likely leading to a higher frequency of moderate to strong updrafts USL above 9-km height. Composites of IN cases show that low-level outflow from the eye region associated with maximum wavenumber-1 vorticity inside the radius of maximum wind (RMW) in the downshear-left quadrant converges with low-level inflow outside the RMW, forming a stronger local secondary circulation in the downshear eyewall than SS cases. The vigorous eyewall convection of IN cases produces a net vertical mass flux increasing with height up to ∼5 km and then is almost constant up to 10 km, whereas the net vertical mass flux of SS cases decreases with height above 4 km. Strong USL upper-level ascent provides greater potential for the vertical development of the hurricane vortex, which is argued to be favorable for continued intensification in shear environments.
Free, publicly-accessible full text available February 1, 2025 -
Abstract The global positioning system dropwindsonde has provided thousands of high-resolution kinematic and thermodynamic soundings in and around tropical cyclones (TCs) since 1997. These data have revolutionized the understanding of TC structure, improved forecasts, and validated observations from remote sensing platforms. About 400 peer-reviewed studies on TCs using these data have been published to date. This paper reviews the history of dropwindsonde observations, changes to dropwindsonde technology since it was first used in TCs in 1982, and how the data have improved forecasting and changed our understanding of TCs.
Free, publicly-accessible full text available November 1, 2024 -
Key Points Lateral entrainment of air from the moat region into eyewall and rainbands of a tropical cyclone (TC) satisfies the instability criterion Positive buoyancy flux induced by the entrainment is an important source of turbulent kinetic energy for the eyewall and rainband clouds Lateral entrainment instability should be included in turbulent mixing parameterizations in TC forecast modelsmore » « less
-
Abstract The momentum roughness length ( z 0 ) significantly impacts wind predictions in weather and climate models. Nevertheless, the impacts of z 0 parameterizations in different wind regimes and various model configurations on the hurricane size, intensity, and track simulations have not been thoroughly established. To bridge this knowledge gap, a comprehensive analysis of 310 simulations of 10 real hurricanes using the Weather Research and Forecasting (WRF) Model is conducted in comparison with observations. Our results show that the default z 0 parameterizations in WRF perform well for weak (category 1–2) hurricanes; however, they underestimate the intensities of strong (category 3–5) hurricanes. This finding is independent of model resolution or boundary layer schemes. The default values of z 0 in WRF agree with the observational estimates from dropsonde data in weak hurricanes while they are much larger than observations in strong hurricanes regime. Decreasing z 0 close to the values of observational estimates and theoretical hurricane intensity models in high wind regimes (≳45 m s −1 ) led to significant improvements in the intensity forecasts of strong hurricanes. A momentum budget analysis dynamically explained why the reduction of z 0 (decreased surface turbulent stresses) leads to stronger simulated storms.more » « less
-
Abstract This study investigates the relationship between the azimuthally averaged kinematic structure of the tropical cyclone boundary layer (TCBL) and storm intensity, intensity change, and vortex structure above the BL. These relationships are explored using composites of airborne Doppler radar vertical profiles, which have a higher vertical resolution than typically used three-dimensional analyses and, therefore, better capture TCBL structure. Results show that the BL height, defined by the depth of the inflow layer, is greater in weak storms than in strong storms. The inflow layer outside the radius of maximum tangential wind speed (RMW) is deeper in intensifying storms than in nonintensifying storms at an early stage. The peak BL convergence inside the RMW is larger in intensifying storms than in nonintensifying storms. Updrafts originating from the TCBL are concentrated near the RMW for intensifying TCs, while updrafts span a large radial range outside the RMW for nonintensifying TCs. In terms of vortex structure above the BL, storms with a quickly decaying radial profile of tangential wind outside the RMW (“narrow” vortices) tend to have a deeper inflow layer outside the RMW, stronger inflow near the RMW, deeper and more concentrated strong updrafts close to the RMW, and weaker inflow in the outer core region than those with a slowly decaying tangential wind profile (“broad” vortices). The narrow TCs also tend to intensify faster than broad TCs, suggesting that a key relationship exists among vortex shape, the BL kinematic structure, and TC intensity change. This relationship is further explored by comparisons of absolute angular momentum budget terms for each vortex shape.more » « less
-
Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL observations has been beneficial for analysis and forecasts in most cases. The outcomes from this study demonstrate the great potential of including DWL wind profiles in the operational HWRF system for hurricane forecast improvement.more » « less
-
null (Ed.)Abstract The thermodynamic effect of downdrafts on the boundary layer and nearby updrafts are explored in idealized simulations of category-3 and category-5 tropical cyclones (Ideal3 and Ideal5). In Ideal5, downdrafts underneath the eyewall pose no negative thermodynamic influence because of eye-eyewall mixing below 2-km altitude. Additionally, a layer of higher θ e between 1 and 2 km altitude associated with low-level outflow that extends 40 km outward from the eyewall region creates a “thermodynamic shield” that prevents negative effects from downdrafts. In Ideal3, parcel trajectories from downdrafts directly underneath the eyewall reveal that low-θ e air initially moves radially inward allowing for some recovery in the eye, but still enters eyewall updrafts with a mean θ e deficit of 5.2 K. Parcels originating in low-level downdrafts often stay below 400 m for over an hour and increase their θ e by 10-14 K, showing that air-sea enthalpy fluxes cause sufficient energetic recovery. The most thermodynamically unfavorable downdrafts occur ~5 km radially outward from an updraft and transport low-θ e mid-tropospheric air towards the inflow layer. Here, the low-θ e air entrains into the updraft in less than five minutes with a mean θ e deficit of 8.2 K. In general, θ e recovery is a function of minimum parcel altitude such that downdrafts with the most negative influence are those entrained into the top of the inflow layer. With both simulated TCs exposed to environmental vertical wind shear, this study underscores that storm structure and individual downdraft characteristics must be considered when discussing paradigms for TC intensity evolution.more » « less
-
Abstract This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided.