skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper investigates the mechanical behaviour of a bi-layered panel containing many particles in one layer and demonstrates the size effect of particles on the deflection. The inclusion-based boundary element method (iBEM) considers a fully bounded bi-material system. The fundamental solution for two-jointed half spaces has been used to acquire elastic fields resulting from source fields over inclusions and boundary-avoiding multi-domain integral along the interface. Eshelby’s equivalent inclusion method is used to simulate the material mismatch with a continuously distributed eigenstrain field over the equivalent inclusion. The eigenstrain is expanded at the centre of the inclusion, which provides tailorable accuracy based on the order of the polynomial of the eigenstrain. As a single-domain approach, the iBEM algorithm is particularly suitable for conducting virtual experiments of bi-layered composites with many defects or reinforcements for both local analysis and homogenization purposes. The maximum deflection of solar panel coupons is studied under uniform vertical loading merged with inhomogeneities of different material properties, dimensions and volume fractions. The size of defects or reinforcements plays a significant role in the deflection of the panel, even with the same volume fraction, as the substrate is relatively thin. 
    more » « less
    Free, publicly-accessible full text available March 1, 2024
  2. Free, publicly-accessible full text available November 1, 2023
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available September 1, 2024
  5. A bstract A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb − 1 . The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of t -channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t -channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. A bstract A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κ T = 0 . 25 and a relative decay width Γ /M T′ < 5%. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024