skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Liangpei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents Holistically-Attracted Wireframe Parsing (HAWP), a method for geometric analysis of 2D images containing wireframes formed by line segments and junctions. HAWP utilizes a parsimonious Holistic Attraction (HAT) field representation that encodes line segments using a closed-form 4D geometric vector field. The proposed HAWP consists of three sequential components empowered by end-to-end and HAT-driven designs: (1) generating a dense set of line segments from HAT fields and endpoint proposals from heatmaps, (2) binding the dense line segments to sparse endpoint proposals to produce initial wireframes, and (3) filtering false positive proposals through a novel endpoint-decoupled line-of-interest aligning (EPD LOIAlign) module that captures the co-occurrence between endpoint proposals and HAT fields for better verification. Thanks to our novel designs, HAWPv2 shows strong performance in fully supervised learning, while HAWPv3 excels in self-supervised learning, achieving superior repeatability scores and efficient training (24 GPU hours on a single GPU). Furthermore, HAWPv3 exhibits a promising potential for wireframe parsing in out-of-distribution images without providing ground truth labels of wireframes. 
    more » « less
  2. This paper presents regional attraction of line segment maps, and hereby poses the problem of line segment detection (LSD) as a problem of region coloring. Given a line segment map, the proposed regional attraction first establishes the relationship between line segments and regions in the image lattice. Based on this, the line segment map is equivalently transformed to an attraction field map (AFM), which can be remapped to a set of line segments without loss of information. Accordingly, we develop an end-to-end framework to learn attraction field maps for raw input images, followed by a squeeze module to detect line segments. Apart from existing works, the proposed detector properly handles the local ambiguity and does not rely on the accurate identification of edge pixels. Comprehensive experiments on the Wireframe dataset and the YorkUrban dataset demonstrate the superiority of our method. In particular, we achieve an F-measure of 0.831 on the Wireframe dataset, advancing the state-of-the-art performance by 10.3 percent. 
    more » « less
  3. Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods. 
    more » « less