skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 25, 2025
  2. Free, publicly-accessible full text available July 29, 2025
  3. With the prevalence of machine learning in many high-stakes decision-making processes, e.g., hiring and admission, it is important to take fairness into account when practitioners design and deploy machine learning models, especially in scenarios with imperfectly labeled data. Multiple-Instance Learning (MIL) is a weakly supervised approach where instances are grouped in labeled bags, each containing several instances sharing the same label. However, current fairness-centric methods in machine learning often fall short when applied to MIL due to their reliance on instance-level labels. In this work, we introduce a Fair Multiple-Instance Learning (FMIL) framework to ensure fairness in weakly supervised learning. In particular, our method bridges the gap between bag-level and instance-level labeling by leveraging the bag labels, inferring high-confidence instance labels to improve both accuracy and fairness in MIL classifiers. Comprehensive experiments underscore that our FMIL framework substantially reduces biases in MIL without compromising accuracy. 
    more » « less
    Free, publicly-accessible full text available June 30, 2025