skip to main content

Search for: All records

Creators/Authors contains: "Zhang, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Much of computer‐generated animation is created by manipulating meshes with rigs. While this approach works well for animating articulated objects like animals, it has limited flexibility for animating less structured free‐form objects. We introduce Wassersplines, a novel trajectory inference method for animating unstructured densities based on recent advances in continuous normalizing flows and optimal transport. The key idea is to train a neurally‐parameterized velocity field that represents the motion between keyframes. Trajectories are then computed by advecting keyframes through the velocity field. We solve an additional Wasserstein barycenter interpolation problem to guarantee strict adherence to keyframes. Our tool can stylize trajectories through a variety of PDE‐based regularizers to create different visual effects. We demonstrate our tool on various keyframe interpolation problems to produce temporally‐coherent animations without meshing or rigging.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Recently proposed as a stable means of evaluating geometric compactness, theisoperimetric profileof a planar domain measures the minimum perimeter needed to inscribe a shape with prescribed area varying from 0 to the area of the domain. While this profile has proven valuable for evaluating properties of geographic partitions, existing algorithms for its computation rely on aggressive approximations and are still computationally expensive. In this paper, we propose a practical means of approximating the isoperimetric profile and show that for domains satisfying a“thick neck”condition, our approximation is exact. For more general domains, we show that our bound is still exact within a conservative regime and is otherwise an upper bound. Our method is based on a traversal of the medial axis which produces efficient and robust results. We compare our technique with the state‐of‐the‐art approximation to the isoperimetric profile on a variety of domains and show significantly tighter bounds than were previously achievable.

    more » « less
  5. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    The 19 F( p , αγ ) 16 O reaction is of crucial importance for Galactic 19 F abundances and CNO cycle loss in first generation Population III stars. Due to its extremely small cross sections, the 19 F( p , αγ ) 16 O reaction has not been measured in the low energy part of the Gamow window(70-200 keV). As a day-one campaign, the experiment was performed under the extremely low cosmicray-induced background environment of the China JinPing Underground Laboratory(CJPL), one of the deepest underground laboratories in the world. The γ -ray yields were measured over E c . m . =72.4–344 keV, covering the full Gamow window for the first time. The direct experimental data will help people to expound the fluorine over-abundances, energy generation, as well as heavy-element nuclosynthesis scenario in asymptotic giant branch (AGB) stars, with the astrophysical model on the firm ground. 
    more » « less