skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Qian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available July 15, 2025
  3. Free, publicly-accessible full text available April 26, 2025
  4. Free, publicly-accessible full text available April 26, 2025
  5. We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider a general class of models. We develop theoretical guarantees for FA-LD for strongly log-concave distributions with non-i.i.d data and study how the injected noise and the stochastic-gradient noise, the heterogeneity of data, and the varying learning rates affect the convergence. Such an analysis sheds light on the optimal choice of local updates to minimize the communication cost. Important to our approach is that the communication efficiency does not deteriorate with the injected noise in the Langevin algorithms. In addition, we examine in our FA-LD algorithm both independent and correlated noise used over different clients. We observe that there is a trade-off between the pairs among communication, accuracy, and data privacy. As local devices may become inactive in federated networks, we also show convergence results based on different averaging schemes where only partial device updates are available. In such a case, we discover an additional bias that does not decay to zero. 
    more » « less
    Free, publicly-accessible full text available April 26, 2025
  6. Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices. 
    more » « less
    Free, publicly-accessible full text available July 4, 2025
  7. Reproducibility of results is a cornerstone of the scientific method. Scientific computing encounters two challenges when aiming for this goal. Firstly, reproducibility should not depend on details of the runtime environment, such as the compiler version or computing environment, so results are verifiable by third-parties. Secondly, different versions of software code executed in the same runtime environment should produce consistent numerical results for physical quantities. In this manuscript, we test the feasibility of reproducing scientific results obtained using the IllinoisGRMHD code that is part of an open-source community software for simulation in relativistic astrophysics, the Einstein Toolkit. We verify that numerical results of simulating a single isolated neutron star with IllinoisGRMHD can be reproduced, and compare them to results reported by the code authors in 2015. We use two different supercomputers: Expanse at SDSC, and Stampede2 at TACC. By compiling the source code archived along with the paper on both Expanse and Stampede2, we find that IllinoisGRMHD reproduces results published in its announcement paper up to errors comparable to round-off level changes in initial data parameters. We also verify that a current version of IllinoisGRMHD reproduces these results once we account for bug fixes which have occurred since the original publication. 
    more » « less
  8. Depth estimation is fundamental to 3D perception, and humans are known to have biased estimates of depth. This study investigates whether convolutional neural networks (CNNs) can be biased when predicting the sign of curvature and depth of surfaces of textured surfaces under different viewing conditions (field of view) and surface parameters (slant and texture irregularity). This hypothesis is drawn from the idea that texture gradients described by local neighborhoods—a cue identified in human vision literature—are also representable within convolutional neural networks. To this end, we trained both unsupervised and supervised CNN models on the renderings of slanted surfaces with random Polka dot patterns and analyzed their internal latent representations. The results show that the unsupervised models have similar prediction biases as humans across all experiments, while supervised CNN models do not exhibit similar biases. The latent spaces of the unsupervised models can be linearly separated into axes representing field of view and optical slant. For supervised models, this ability varies substantially with model architecture and the kind of supervision (continuous slant vs. sign of slant). Even though this study says nothing of any shared mechanism, these findings suggest that unsupervised CNN models can share similar predictions to the human visual system. Code: github.com/brownvc/Slant-CNN-Biases 
    more » « less