skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Qingbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antioxidant properties of inorganic nanoparticles in aqueous media are attracting growing interest due to their high surface reactivity. Materials such as cerium oxide, iron oxide, silver, and gold exhibit distinct radical-scavenging behaviors at the nanoscale, but reliable quantification remains challenging. Conventional assays developed for molecular antioxidants cannot be directly applied because probes such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) require methanol–water mixtures and are unstable in aqueous nanoparticle suspensions, while other assays are affected by nanoparticle-induced absorption or fluorescence changes. Here we demonstrate strategies to correct these interferences by independently measuring nanoparticle optical properties after oxidation and customizing assay conditions to account for the dilute, per-particle concentrations of nanomaterials. Using a high-throughput 96-well format, four adapted assays revealed that silver, ceria, and iron oxide nanoparticles possess substantially higher antioxidant capacities than Trolox, while gold showed negligible activity. This optimized approach enables reproducible comparison of nanoparticle antioxidants and provides a platform for tailoring nanostructures with enhanced radical-scavenging properties. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Porous magnetic nanoparticles show pronounced size-dependent effects on bacterial removal, providing guidance for designing effective magnetic adsorbents. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  3. Reactive surface coatings reduce cerium in nanoscale ceria leading to more potent antioxidant behavior. 
    more » « less