Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In biomedical research the analysis of disease prevalence is of critical importance. While most of the existing prevalence studies focus on individual diseases, there has been increasing effort that jointly examines the prevalence values and their trends of multiple diseases. Such joint analysis can provide valuable insights not shared by individual-disease analysis. A critical limitation of the existing analysis is that there is a lack of attention to existing information, which has been accumulated through a large number of studies and can be valuable especially when there are a large number of diseases but the number of prevalence values for a specific disease is limited. In this study we conduct the functional clustering analysis of prevalence trends for a large number of diseases. A novel approach based on the penalized fusion technique is developed to incorporate information mined from published articles. It is innovatively designed to take into account that such information may not be fully relevant or correct. Another significant development is that statistical properties are rigorously established. Simulation is conducted and demonstrates its competitive performance. In the analysis of data from Taiwan NHIRD (National Health Insurance Research Database), new and interesting findings that differ from the existing ones are made.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Trajectory prediction is a critical component for autonomous vehicles (AVs) to perform safe planning and navigation. However, few studies have analyzed the adversarial robustness of trajectory prediction or investigated whether the worst-case prediction can still lead to safe planning. To bridge this gap, we study the adversarial robustness of trajectory prediction models by proposing a new adversarial attack that perturbs normal vehicle trajectories to maximize the prediction error. Our experiments on three models and three datasets show that the adversarial prediction increases the prediction error by more than 150%. Our case studies show that if an adversary drives a vehicle close to the target AV following the adversarial trajectory, the AV may make an inaccurate prediction and even make unsafe driving decisions. We also explore possible mitigation techniques via data augmentation and trajectory smoothing.more » « less
-
Autonomous vehicles (AVs) are on the verge of changing the transportation industry. Despite the fast development of autonomous driving systems (ADSs), they still face safety and security challenges. Current defensive approaches usually focus on a narrow objective and are bound to specific platforms, making them difficult to generalize. To solve these limitations, we propose AVMaestro, an efficient and effective policy enforcement framework for full-stack ADSs. AVMaestro includes a code instrumentation module to systematically collect required information across the entire ADS, which will then be feed into a centralized data examination module, where users can utilize the global information to deploy defensive methods to protect AVs from various threats. AVMaestro is evaluated on top of Apollo-6.0 and experimental results confirm that it can be easily incorporated into the original ADS with almost negligible run-time delay. We further demonstrate that utilizing the global information can not only improve the accuracy of existing intrusion detection methods, but also potentially inspire new security applications.more » « less
-
Wren, Jonathan (Ed.)Abstract Summary Heterogeneity is a hallmark of many complex human diseases, and unsupervised heterogeneity analysis has been extensively conducted using high-throughput molecular measurements and histopathological imaging features. ‘Classic’ heterogeneity analysis has been based on simple statistics such as mean, variance and correlation. Network-based analysis takes interconnections as well as individual variable properties into consideration and can be more informative. Several Gaussian graphical model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide informative summary and graphical presentation, and is efficient and friendly. Availabilityand implementation The package is available at https://CRAN.R-project.org/package=HeteroGGM. Supplementary information Supplementary data are available at Bioinformatics online.more » « less