skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Ren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show that reactive molecules with a unit probability of reaction naturally provide a simulator of some intriguing black hole physics. The unit reaction at the short distance acts as an event horizon and delivers a one-way traffic for matter waves passing through the potential barrier when two molecules interact by high partial-wave scatterings or dipole-dipole interactions. In particular, the scattering rate as a function of the incident energy exhibits a thermal-like distribution near the maximum of the interaction energy in the same manner as a scalar field scatters with the potential barrier outside the event horizon of a black hole. Such a thermal-like scattering can be extracted from the temperature-dependent two-body loss rate measured in experiments on KRb and other molecules. 
    more » « less
  2. The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene- block -methymethacrylate) (PS- b -PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO, demonstrates the broader applications of such membranes. 
    more » « less