skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Shaokun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fair influence maximization in networks has been actively studied to ensure equity in fields like viral marketing and public health. Existing studies often assume an offline setting, meaning that the learner identifies a set of seed nodes with known per-edge activation probabilities. In this paper, we study the problem of fair online influence maximization, i.e., without knowing the ground-truth activation probabilities. The learner in this problem aims to maximally propagate the information among demographic groups, while interactively selecting seed nodes and observing the activation feedback on the fly. We propose Fair Online Influence Maximization (FOIM) framework that can solve the online influence maximization problem under a wide range of fairness notions. Given a fairness notion, FOIM solves the problem with a combinatorial multi-armed bandit algorithm for balancing exploration-exploitation and an offline fair influence maximization oracle for seed nodes selection. FOIM enjoys sublinear regret when the fairness notion satisfies two mild conditions, i.e., monotonicity and bounded smoothness. Our analyses show that common fairness notions, including maximin fairness, diversity fairness, and welfare function, all satisfy the condition, and we prove the corresponding regret upper bounds under these notions. Extensive empirical evaluations on three real-world networks demonstrate the efficacy of our proposed framework. 
    more » « less
    Free, publicly-accessible full text available June 28, 2026