skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Shengfan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Human papillomavirus (HPV) is the most common sexually transmitted infection in the United States. HPV can cause genital warts and multiple types of cancers in females. HPV vaccination is recommended to youth age 11 or 12 years before sexual initiation to prevent onset of HPV-related diseases. For females who have not been vaccinated previously, catch-up vaccines are recommended through age 26. The extent to which catch-up vaccines are beneficial in terms of disease prevention and cost-effectiveness is questionable given that some women may have been exposed to HPV before receiving the catch-up vaccination. This study aims to examine whethermore »the cutoff age of catch-up vaccination should be determined based on an individual woman’s risk characteristic instead of a one-size-fits-all age 26. Methods We developed a microsimulation model to evaluate multiple clinical outcomes of HPV vaccination for different women based on a number of personal attributes. We modeled the impact of HPV vaccination at different ages on every woman and tracked her course of life to estimate the clinical outcomes that resulted from receiving vaccines. As the simulation model is risk stratified, we used extreme gradient boosting to build an HPV risk model estimating every woman’s dynamic HPV risk over time for the lifetime simulation model. Results Our study shows that catch-up vaccines still benefit all women after age 26 from the perspective of clinical outcomes. Women facing high risk of HPV infection are expected to gain more health benefits compared with women with low HPV risk. Conclusions From a cancer prevention perspective, this study suggests that the catch-up vaccine after age 26 should be deliberately considered.« less
    Free, publicly-accessible full text available May 1, 2023
  2. Abstract Objective This study aims to establish an informative dynamic prediction model of treatment outcomes using follow-up records of tuberculosis (TB) patients, which can timely detect cases when the current treatment plan may not be effective. Materials and Methods We used 122 267 follow-up records from 17 958 new cases of pulmonary TB in the Republic of Moldova. A dynamic prediction framework integrating landmark modeling and machine learning algorithms was designed to predict patient outcomes during the course of treatment. Sensitivity and positive predictive value (PPV) were calculated to evaluate performance of the model at critical time points. New measures were definedmore »to determine when follow-up laboratory tests should be conducted to obtain most informative results. Results The random-forest algorithm performed better than support vector machine and penalized multinomial logistic regression models for predicting TB treatment outcomes. For all 3 outcome classes (ie, cured, not cured, and died after 24 months following treatment initiation), sensitivity and PPV of prediction models improved as more follow-up information was collected. Specifically, sensitivity and PPV increased from 0.55 to 0.84 and from 0.32 to 0.88, respectively, for the not cured class. Conclusion The dynamic prediction framework utilizes longitudinal laboratory test results to predict patient outcomes at various landmarks. Sputum culture and smear results are among the important variables for prediction; however, the most recent sputum result is not always the most informative one. This framework can potentially facilitate a more effective treatment monitoring program and provide insights for policymakers toward improved guidelines on follow-up tests.« less
    Free, publicly-accessible full text available February 9, 2023