skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Shimin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optically active spin defects in solids1,2are leading candidates for quantum sensing3,4and quantum networking5,6. Recently, single spin defects were discovered in hexagonal boron nitride (hBN)7–11, a layered van der Waals (vdW) material. Owing to its two-dimensional structure, hBN allows spin defects to be positioned closer to target samples than in three-dimensional crystals, making it ideal for atomic-scale quantum sensing12, including nuclear magnetic resonance (NMR) of single molecules. However, the chemical structures of these defects7–11remain unknown and detecting a single nuclear spin with a hBN spin defect has been elusive. Here we report the creation of single spin defects in hBN using13C ion implantation and the identification of three distinct defect types based on hyperfine interactions. We observed bothS = 1/2 andS = 1 spin states within a single hBN spin defect. We demonstrated atomic-scale NMR and coherent control of individual nuclear spins in a vdW material, with a π-gate fidelity up to 99.75% at room temperature. By comparing experimental results with density functional theory (DFT) calculations, we propose chemical structures for these spin defects. Our work advances the understanding of single spin defects in hBN and provides a pathway to enhance quantum sensing using hBN spin defects with nuclear spins as quantum memories. 
    more » « less
    Free, publicly-accessible full text available July 24, 2026
  2. Abstract Point defects in hexagonal boron nitride (hBN) are promising candidates as single-photon emitters (SPEs) in nanophotonics and quantum information applications. The precise control of SPEs requires in-depth understanding of their optoelectronic properties. However, how the surrounding environment of host materials, including the number of layers, substrates, and strain, influences SPEs has not been fully understood. In this work, we study the dielectric screening effect due to the number of layers and substrates, and the strain effect on the optical properties of carbon dimer and nitrogen vacancy defects in hBN from first-principles many-body perturbation theory. We report that environmental screening causes a lowering of the quasiparticle gap and exciton binding energy, leading to nearly constant optical excitation energy and exciton radiative lifetime. We explain the results with an analytical model starting from the Bethe–Salpeter equation Hamiltonian with Wannier basis. We also show that optical properties of quantum defects are largely tunable by strain with highly anisotropic response, in good agreement with experimental measurements. Our work clarifies the effect of environmental screening and strain on optoelectronic properties of quantum defects in two-dimensional insulators, facilitating future applications of SPEs and spin qubits in low-dimensional systems. 
    more » « less