Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a multi-instrument observational analysis of the equatorial plasma bubbles (EPBs) variation over the American sector during a geomagnetically quiet time period of 07–10 December 2019. The day-to-day variability of EPBs and their underlying drivers are investigated through coordinately utilizing the Global-scale Observations of Limb and Disk (GOLD) ultraviolet images, the Ionospheric Connection Explorer (ICON) in-situ and remote sensing data, the global navigation satellite system (GNSS) total electron content (TEC) observations, as well as ionosonde measurements. The main results are as follows: 1) The postsunset EPBs’ intensity exhibited a large day-to-day variation in the same UT intervals, which was fairly noticeable in the evening of December 07, yet considerably suppressed on December 08 and 09, and then dramatically revived and enhanced on December 10. 2) The postsunset linear Rayleigh-Taylor instability growth rate exhibited a different variation pattern. It had a relatively modest peak value on December 07 and 08, yet a larger peak value on December 09 and 10. There was a 2-h time lag of the growth rate peak time in the evening of December 09 from other nights. This analysis did not show an exact one-to-one relationship between the peak growth rate and the observed EPBs intensity. 3) The EPBs’ day-to-day variation has a better agreement with that of traveling ionospheric disturbances and atmospheric gravity waves signatures, which exhibited relatively strong wavelike perturbations preceding/accompanying the observed EPBs on December 07 and 10 yet relatively weak fluctuations on December 08 and 09. These coordinate observations indicate that the initial wavelike seeding perturbations associated with AGWs, together with the catalyzing factor of the instability growth rate, collectively played important roles to modulate the day-to-day variation of EPBs. A strong seeding perturbation could effectively compensate for a moderate strength of Rayleigh-Taylor instability growth rate and therefore their combined effect could facilitate EPB development. Lacking proper seeding perturbations would make it a more inefficient process for the development of EPBs, especially with a delayed peak value of Rayleigh-Taylor instability growth rate.more » « lessFree, publicly-accessible full text available March 21, 2024
-
Free, publicly-accessible full text available February 1, 2024
-
Free, publicly-accessible full text available December 1, 2023
-
Climate change is characterized by global surface warming associated with the increase of greenhouse gas population since the start of the industrial era. Growing evidence shows that the upper atmosphere is experiencing appreciable cooling over the last several decades. The seminal modeling study by Roble and Dickinson (1989) suggested potential effects of increased greenhouse gases on the ionosphere and thermosphere cooling which appear consistent with some observations. However, several outstanding issues remain regarding the role of CO 2 , other important contributors, and impacts of the cooling trend in the ionosphere and thermosphere: for example, (1) what is the regional variability of the trends? (2) the very strong ionospheric cooling observed by multiple incoherent scatter radars that does not fit with the prevailing theory based on the argument of anthropogenic greenhouse gas increases, why? (3) what is the effect of secular changes in Earth’s main magnetic field? Is it visible now in the ionospheric data and can it explain some of the regional variability in the observed ionospheric trends? (4) what is the impact of long-term cooling in the thermosphere on operational systems? (5) what are the appropriate strategic plans to ensure the long-term monitoring of the critical space climate?more » « lessFree, publicly-accessible full text available February 13, 2024
-
Free, publicly-accessible full text available February 16, 2024
-
Abstract This paper conducts a multi‐instrument analysis and data assimilation study of midlatitude ionospheric disturbances over the European and North American longitude sectors during a strong geomagnetic storm on 26–28 February 2023. The study uses a set of ground‐based (GNSS receivers, ionosondes) observations, space‐borne (DMSP, GOLD) measurements, and a new TEC‐based ionospheric data assimilation system (TIDAS). We observed a series of distinct storm‐time features with regard to storm‐enhanced density (SED) and subauroral polarization stream (SAPS) as follows: (a) Under multiple ring current intensifications, the storm‐time subauroral ionosphere produced long‐lasting duskside SAPS for ∼36 hr along with considerable dawnside SAPS for several hours. (b) Associated with long‐lived SAPS, strong SED occurred consecutively in the European longitude sector near local noon during a positive ionospheric storm and later in the North American longitude sector near local dusk during a negative ionospheric storm. (c) The 3‐D morphology of SED in multiple longitude sectors was reconstructed using TIDAS data assimilation technique with fine‐scale details, which revealed a narrow ionospheric plasma channel with electron density enhancement and layer uplift.
-
In the space physics community, processing and combining observational and modeling data from various sources is a demanding task because they often have different formats and use different coordinate systems. The Python package GeospaceLAB has been developed to provide a unified, standardized framework to process data. The package is composed of six core modules, including DataHub as the data manager, Visualization for generating publication quality figures, Express for higher-level interfaces of DataHub and Visualization , SpaceCoordinateSystem for coordinate system transformations, Toolbox for various utilities, and Configuration for preferences. The core modules form a standardized framework for downloading, storing, post-processing and visualizing data in space physics. The object-oriented design makes the core modules of GeospaceLAB easy to modify and extend. So far, GeospaceLAB can process more than twenty kinds of data products from nine databases, and the number will increase in the future. The data sources include, e.g., measurements by EISCAT incoherent scatter radars, DMSP, SWARM, and Grace satellites, OMNI solar wind data, and GITM simulations. In addition, the package provides an interface for the users to add their own data products. Hence, researchers can easily collect, combine, and view multiple kinds of data for their work using GeospaceLAB. Combining data from different sources will lead to a better understanding of the physics of the studied phenomena and may lead to new discoveries. GeospaceLAB is an open source software, which is hosted on GitHub. We welcome everyone in the community to contribute to its future development.more » « lessFree, publicly-accessible full text available December 7, 2023
-
Abstract We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts.
-
The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere.more » « less