skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Tong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As regional grids increase penetrations of variable renewable electricity (VRE) sources, demand-side management (DSM) presents an opportunity to reduce electricity-related emissions by shifting consumption patterns in a way that leverages the large diurnal fluctuations in the emissions intensity of the electricity fleet. Here we explore residential precooling, a type of DSM designed to shift the timing of air-conditioning (AC) loads from high-demand periods to periods earlier in the day, as a strategy to reduce peak period demand, CO2emissions, and residential electricity costs in the grid operated by the California Independent System Operator (CAISO). CAISO provides an interesting case study because it generally has high solar generation during the day that is replaced by fast-ramping natural gas generators when it drops off suddenly in the early evening. Hence, CAISO moves from a fleet of generators that are primarily clean and cheap to a generation fleet that is disproportionately emissions-intensive and expensive over a short period of time, creating an attractive opportunity for precooling. We use EnergyPlus to simulate 480 distinct precooling schedules for four single-family homes across California’s 16 building climate zones. We find that precooling a house during summer months in the climate zone characterizing Downtown Los Angeles can reduce peak period electricity consumption by 1–4 kWh d−1and cooling-related CO2emissions by as much as 0.3 kg CO2 d−1depending on single-family home design. We report results across climate zone and single-family home design and show that precooling can be used to achieve simultaneous reductions in emissions, residential electricity costs, and peak period electricity consumption for a variety of single-family homes and locations across California.

    more » « less
    Free, publicly-accessible full text available October 9, 2024
  2. Free, publicly-accessible full text available August 8, 2024
  3. Federated Averaging (FedAvg) and its variants are the most popular optimization algorithms in federated learning (FL). Previous convergence analyses of FedAvg either assume full client participation or partial client participation where the clients can be uniformly sampled. However, in practical cross-device FL systems, only a subset of clients that satisfy local criteria such as battery status, network connectivity, and maximum participation frequency requirements (to ensure privacy) are available for training at a given time. As a result, client availability follows a natural cyclic pattern. We provide (to our knowledge) the first theoretical framework to analyze the convergence of FedAvg with cyclic client participation with several different client optimizers such as GD, SGD, and shuffled SGD. Our analysis discovers that cyclic client participation can achieve a faster asymptotic convergence rate than vanilla FedAvg with uniform client participation under suitable conditions, providing valuable insights into the design of client sampling protocols. 
    more » « less
    Free, publicly-accessible full text available July 23, 2024
  4. This paper studies how RAID (redundant array of independent disks) could take full advantage of modern SSDs (solid-state drives) with built-in transparent compression. In current practice, RAID users are forced to choose a specific RAID level (e.g., RAID 10 or RAID 5) with a fixed storage cost vs. speed performance trade-off. The commercial market is witnessing the emergence of a new family of SSDs that can internally perform hardware-based lossless compression on each 4KB LBA (logical block address) block, transparent to host OS and user applications. Beyond straightforwardly reducing the RAID storage cost, such modern SSDs make it possible to relieve RAID users from being locked into a fixed storage cost vs. speed performance trade-off. In particular, RAID systems could opportunistically leverage higher-than-expected runtime user data compressibility to enable dynamic RAID level conversion to improve the speed performance without compromising the effective storage capacity. This paper presents techniques to enable and optimize the practical implementation of such elastic RAID systems. We implemented a Linux software-based elastic RAID prototype that supports dynamic conversion between RAID 5 and RAID 10. Compared with a baseline software-based RAID 5, under sufficient runtime data compressibility that enables the conversion from RAID 5 to RAID 10 over 60% of user data, the elastic RAID could improve the 4KB random write IOPS (I/O per second) by 42% and 4KB random read IOPS in degraded mode by 46%, while maintaining the same effective storage capacity. 
    more » « less
    Free, publicly-accessible full text available June 5, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Free, publicly-accessible full text available April 20, 2024