- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01000000001
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wu, Y. N. (2)
-
Zhang, W. H. (2)
-
Gao, R. (1)
-
Wei, X. X. (1)
-
Wu, S. (1)
-
Xu, D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Equivariant representation is necessary for the brain and artificial perceptual systems to faithfully represent the stimulus under some (Lie) group transformations. However, it remains unknown how recurrent neural circuits in the brain represent the stimulus equivariantly, nor the neural representation of abstract group operators. The present study uses a one-dimensional (1D) translation group as an example to explore the general recurrent neural circuit mechanism of the equivariant stimulus representation. We found that a continuous attractor network (CAN), a canonical neural circuit model, self-consistently generates a continuous family of stationary population responses (attractors) that represents the stimulus equivariantly. Inspired by the Drosophila’s compass circuit, we found that the 1D translation operators can be represented by extra speed neurons besides the CAN, where speed neurons’ responses represent the moving speed (1D translation group parameter), and their feedback connections to the CAN represent the translation generator (Lie algebra). We demonstrated that the network responses are consistent with experimental data. Our model for the first time demonstrates how recurrent neural circuitry in the brain achieves equivariant stimulus representation.more » « less
-
Xu, D. ; Gao, R. ; Zhang, W. H. ; Wei, X. X. ; Wu, Y. N. ( , Symmetry and Geometry in Neural Representations (NeurReps Workshop), Neural Information Processing Systems (NeurIPS 2022))The activity of the grid cell population in the medial entorhinal cortex (MEC) of the mammalian brain forms a vector representation of the self-position of the animal. Recurrent neural networks have been proposed to explain the properties of the grid cells by updating the neural activity vector based on the velocity input of the animal. In doing so, the grid cell system effectively performs path integration. In this paper, we investigate the algebraic, geometric, and topological properties of grid cells using recurrent network models. Algebraically, we study the Lie group and Lie algebra of the recurrent transformation as a representation of self-motion. Geometrically, we study the conformal isometry of the Lie group representation where the local displacement of the activity vector in the neural space is proportional to the local displacement of the agent in the 2D physical space. Topologically, the compact abelian Lie group representation automatically leads to the torus topology commonly assumed and observed in neuroscience. We then focus on a simple non-linear recurrent model that underlies the continuous attractor neural networks of grid cells. Our numerical experiments show that conformal isometry leads to hexagon periodic patterns in the grid cell responses and our model is capable of accurate path integration.more » « less