Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Amidst rapidly changing ocean soundscapes, research is still unraveling how marine animals use sound to communicate, detect predators, seek prey, and find suitable habitat. These vital behaviors may also be impacted by anthropogenic noise. Here, we describe a new tool, a Reef Acoustic Playback System, or RAPS, designed to be a cost-effective, extended-duration device that allows researchers to remotely and replay sound cues, manipulate soundscapes, and introduce “noise” into field-based experiments to address key questions regarding sound use or noise impacts within ocean ecology and conservation. The RAPS, outlined herein, has been deployed in the field for days to weeks, powered by renewable solar energy. The tool has been proven to be flexible in applications and robust to a range of ocean conditions. We outline the tool and describe several use cases, including use of the RAPS to replay healthy soundscapes to enhance the settlement of coral larvae, a fundamental ecological process sustaining coral reefs. Fundamentally, the RAPS is a new, potentially scalable means of supporting both healthy and imperiled reefs undergoing restoration, enhancing settlement of reef larvae, and broadening our ability to conduct a range of acoustic behavior studies.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Coastal currents can vary dramatically in space and time, influencing advection and residence time of larvae, nutrients and contaminants in coastal environments. However, spatial and temporal variabilities of the residence time of these materials in coastal environments, such as coastal bays, are rarely quantified in ecological applications. Here, we use a particle tracking model built on top of the high-resolution hydrodynamic model described in Part 1 to simulate the dispersal of particles released in coastal bays around a key and model island study site, St. John, USVI without considering the impact of surface waves. Motivated to provide information for future coral and fish larval dispersal and contaminant spreading studies, this first step of the study toward understanding fine-scale dispersal variability in coastal bays aimed to characterize the cross-bay variability of particle residence time in the bays. Both three-dimensionally distributed (3D) and surface-trapped (surface) particles are considered. Model simulations show pronounced influences of winds, intruding river plumes, and bay orientation on the residence time. The residence times of 3D particles in many of the bays exhibit a clear seasonality, correlating with water column stratification and patterns of the bay-shelf exchange flow. When the water column is well-mixed, the exchange flow is laterally sheared, allowing a significant portion of exported 3D particles to re-enter the bays, resulting in high residence times. During stratified seasons, due to wind forcing or intruding river plumes, the exchange flows are vertically sheared, reducing the chance of 3D particles returning to the bays and their residence time in the bays. For a westward-facing bay with the axis aligned the wind, persistent wind-driven surface flows carry surface particles out of the bays quickly, resulting in a low residence time in the bay; when the bay axis is misaligned with the wind, winds can trap surface particles on the west coast in the bay and dramatically increase their residence time. The strong temporal and inter-bay variation in the duration of particles staying in the bays, and their likely role in larval and contaminant dispersal, highlights the importance of considering fine-scale variability in the coastal circulation when studying coastal ecosystems and managing coastal resources.more » « lessFree, publicly-accessible full text available June 16, 2026
-
Physical conditions in coastal ecosystems can vary dramatically in space and time, influencing marine habitats and species distribution. However, such physical variability is often overlooked in ecological research, particularly in coral reef research and conservation. This study aims to quantify fine-scale variability in the physical conditions of a coastal environment to provide critical context for coastal ecosystem conservation and coral reef restoration. By developing and analyzing a 50 m-resolution hydrodynamic model, we characterize the physical oceanographic environment around the tropical island of St. John, U.S. Virgin Islands. Model simulations reveal that tides, winds, and the Amazon and Orinoco River plumes, interacting with the complex coastline and seafloor topography, create significant spatial and temporal variability in the coastal environment. Differences in tidal characteristics between the north and south shores generate strong oscillatory tidal flows in the channels surrounding St. John. The mean flow around the island is predominantly westward, driven by prevailing easterly winds. Water temperature and salinity exhibit variability over relatively smalllengthscales, with characteristic alongshore length scales of 3–10 km, depending on the season. Hydrodynamic conditions also vary across multipletimescales. Strong tidal flows interacting with headland geometry produce transient eddies with strong convergent/divergent flows and variability on the scale of hours. Synoptic-scale flow variations are driven by weather events, while seasonal variations are strongly influenced by the Amazon and Orinoco River plumes. During summer and fall, these river plumes freshen the waters on the south shore of St. John, creating significant salinity differences between the north and south shores. These fine-scale physical variabilities can exert a strong influence on the coastal ecosystem and should be considered in the management of coastal resources. By providing a detailed understanding of the physical environment, this study supports efforts to conserve and restore coastal ecosystems, particularly coral reefs, in the face of dynamic and complex oceanographic conditions.more » « lessFree, publicly-accessible full text available June 10, 2026
-
The_Royal_Society_Publishing (Ed.)Coral reefs, hubs of global biodiversity, are among the world’s most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates.Porites astreoideslarvae were exposed to reef sounds using a custom solar-powered acoustic playback system.Porites astreoidessettled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs.more » « less
-
Abstract This study examines the process of water-column stratification breakdown in Antarctic coastal polynyas adjacent to an ice shelf with a cavity underneath. This first part of a two-part sequence seeks to quantify the influence of offshore katabatic winds, alongshore winds, air temperature, and initial ambient stratification on the time scales of polynya destratification through combining process-oriented numerical simulations and analytical scaling. In particular, the often-neglected influence of wind-driven circulation on the lateral transport of the water formed at the polynya surface—which we call Polynya Source Water (PSW)—is systematically examined here. First, an ice shelf–sea ice–ocean coupled numerical model is adapted to simulate the process of PSW formation in polynyas of various configurations. The simulations highlight that (i) before reaching the bottom, majority of the PSW is actually carried away from the polynya by katabatic wind–induced offshore outflow, diminishing water-column mixing in the polynya and intrusion of the PSW into the neighboring ice shelf cavity, and (ii) alongshore coastal easterly winds, through inducing onshore Ekman transport, reduce offshore loss of the PSW and enhance polynya mixing and PSW intrusion into the cavity. Second, an analytical scaling of the destratification time scale is derived based on fundamental physical principles to quantitatively synthesize the influence of the physical factors, which is then verified by independent numerical sensitivity simulations. This work provides insights into the mechanisms that drive temporal and cross-polynya variations in stratification and PSW formation in Antarctic coastal polynyas, and establishes a framework for studying differences among the polynyas in the ocean.more » « less
-
Abstract This is Part II of a study examining wintertime destratification in Antarctic coastal polynyas, focusing on providing a qualitative description of the influence of ice tongues and headlands, both common geometric features neighboring the polynyas. The model of a coastal polynya used in Part I is modified to include an ice tongue and a headland to investigate their impacts on the dispersal of water formed at the polynya surface, which is referred to as Polynya Source Water (PSW) here. The model configuration qualitatively represents the settings of some coastal polynyas, such as the Terra Nova Bay Polynya. The simulations highlight that an ice tongue next to a polynya tends to break the alongshore symmetry in the lateral return flows toward the polynya, creating a stagnant region in the corner between the ice tongue and polynya where outflow of the PSW in the water column is suppressed. This enhances sinking of the PSW and accelerates destratification of the polynya water column. Adding a headland to the other side of the polynya tends to restore the alongshore symmetry in the lateral return flows, which increases the offshore PSW transport and slows down destratification in the polynya. This work stresses the importance of resolving small-scale geometric features in simulating vertical mixing in the polynya. It provides a framework to explain spatial and temporal variability in rates of destratification and Dense Shelf Water formation across Antarctic coastal polynyas, and helps understand why some polynyas are sources of Antarctic Bottom Water while others are not.more » « less
-
Abstract The ocean's twilight zone (TZ) is a vast, globe-spanning region of the ocean. Home to myriad fishes and invertebrates, mid-water fishes alone may constitute 10 times more biomass than all current ocean wild-caught fisheries combined. Life in the TZ supports ocean food webs and plays a critical role in carbon capture and sequestration. Yet the ecological roles that mesopelagic animals play in the ocean remain enigmatic. This knowledge gap has stymied efforts to determine the effects that extraction of mesopelagic biomass by industrial fisheries, or alterations due to climate shifts, may have on ecosystem services provided by the open ocean. We propose to develop a scalable, distributed observation network to provide sustained interrogation of the TZ in the northwest Atlantic. The network will leverage a “tool-chest” of emerging and enabling technologies including autonomous, unmanned surface and underwater vehicles and swarms of low-cost “smart” floats. Connectivity among in-water assets will allow rapid assimilation of data streams to inform adaptive sampling efforts. The TZ observation network will demonstrate a bold new step towards the goal of continuously observing vast regions of the deep ocean, significantly improving TZ biomass estimates and understanding of the TZ's role in supporting ocean food webs and sequestering carbon.more » « less
-
Abstract The Mid‐Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf‐break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in‐situ and remote sensing data, and a 2‐dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf‐break front in spring. Using 8‐day composite satellite‐measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross‐shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In‐situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf‐break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2‐dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf‐break front.more » « less
An official website of the United States government
